

Volume 71 (2015)

Supporting information for article:

3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase from *Advenella mimigardefordensis* DPN7^T: crystal structure and function of a desulfinase with an acyl-CoA dehydrogenase fold

Marc Schürmann, Rob Meijers, Thomas R. Schneider, Alexander Steinbüchel and Michele Cianci

Table S1 List of primers used for PCR. If primer name begins with "P" the primer was 5'-phosphorylated. Underlined nucleotides differ from the native sequence in order to generate amino acid mutations. All primers were purchased from MWG Biotech AG, Ebersberg, Germany.

ligonucleotide sequence (5'-3') ^a	
P_DPN7_R84K_rev	GCGCAAGCTTTAGCCATTTCTTCAATG
P_DPN7_R84K_fwd	$CACTATGGGA\underline{AA}AATAACAGTGGACTCAAATCTG\\$
P_DPN7C122S_fwd	ACCTGCAAGAACAAGGTCAGCCGC
P_DPN7C122S_rev	${\sf GATAAGCCGGCGATC} \underline{{\sf A}} {\sf GTATATCAGAGCC}$
P_DPN7Q246E_fwd	GAAGAGGCGTAGCCTATCTTAAGCGC
P_DPN7Q246E_rev	GAAGGCGCATT <u>C</u> TGCAATACCCA

Table S2 Overall folding of Acd_{DPN7}.

Secondary structure	Apo, monomer A	Apo, monomer B	Holo, monomer A	Holo, monomer F
α-helix A	4-34	5-34	5-34	5-34
α-helix B	37-46	37-47	37-47	37-47
α-helix C	55-58	56-58	56-58	56-58
α-helix D	65-87	65-87	65-88	65-88
α-helix E	93-100	93-100	93-100	93-100
α-helix F	103-115	103-115	103-115	103-115
β-strands 1	120-123	120-123	120-123	120-123
β-strands 2	137-142	137-140	137-140	137-140
β-strands 3	145-156	145-156	145-156	145-156
β-strands 4	163-172	163-172	163-172	163-172
β-strands 5	175-185	175-185	175-185	175-185
β-strands 6	194-198	194-199	193-199	193-199
β-strands 7	209-221	210-221	210-222	210-222
α-helix G	233-272	233-271	237-271	237-271
α-helix H	284-308	283-308	283-308	283-308
α-helix I	315-345	316-346	316-346	316-346
α-helix K	357-380	353-380	353-380	352-380

Figure S1 The coenzyme A groups of monomers A (left column) and E (right column) (depicted in ball-and-stick with atoms color coded: carbon = green; oxygen = red; phosphor = magenta; blue = nitrogen; yellow = sulfur) fitted into: a-b) the Fo-Fc difference Fourier OMIT map (green mesh; contour level 3.0 σ , calculated without the substrate; c-d) the 2Fo-Fc difference Fourier map (blue mesh; contour level 1.0 σ) calculated with of PHENIX; e-f) the 2Fo-Fc difference Fourier map (blue mesh; contour level 2.0 σ) calculated using the "feature enhanced" option of PHENIX.

Figure S2 Superimposition of monomer B (color ice blue), D (light blue), E (magenta) and F (blue) to monomer A (cyan) showing the high correlation between position of coenzyme A within the cavity of Acd_{DPN7} 3SP-CoA desulfinase

Figure S3 Superimposition of the structures of the glutaryl-CoA dehydrogenase from *Desulfococcus multivorans* in complex with glutaryl-CoA (PDB code: 3mpi (Wischgoll *et al.*, 2010)) (grey) and of the medium chain acyl-CoA dehydrogenase from pig liver mitochondria in complex with octanoyl-CoA (PDB code: 3mde (Kim *et al.*, 1993)) (gold) with the structure of Acd_{DPN7} 3SP-CoA desulfinase monomer A (cyan).

Figure S4 a) Size-exclusion chromatography of wtAcd_{DPN7} and Acd_{DPN7_R84K}. It illustrates that Acd_{DPN7_R84K} was purified as an intact tetramer; the retention time of 181 min corresponds to a molecular mass of about 173 kDa (theoretically 179 kDa). b) Absorption spectrum of Acd_{DPN7_R84K}. The absorption spectrum of Acd_{DPN7_R84K} is highly similar to the spectrum of Acd_{DPN7} that we published previously (Schürmann et al. 2013). This indicates that all FAD binding sites are saturated.

Figure S5 Left panel) Oxygen-independency of Acd_{DPN7}. Purified Acd_{DPN7} was incubated in presence or absence of oxygen (nitrogen saturation) as described in the Materials and Methods section; right panel) A) Assay solution after flushing with compressed air for 2 min. B1) Assay solution after flushing with nitrogen for 5 min. B2) Assay solution after completion of enzyme assay (addition of Acd_{DPN7}). C1) Assay solution after flushing with oxygen for 5 min. C1) Assay solution after completion of enzyme assay (addition of Acd_{DPN7}).

Figure S6 Purified Acd_{DPN7} containing either FAD or FADH₂ (after reduction with dithionite) was incubated with 0.1 mM 3SP-CoA in presence of 0.2 mM DTNB in an anaerobic chamber as described in the Materials and Methods section. The increase in absorption was followed at 412 nm.