Supporting Information

Supporting Figure S1 Transient state ATPase activity of of Kif15₁₉₋₃₇₅ and Kif15₁₋₃₇₅. **a)** Transient state ATP turnover. Addition of Kif15₁₉₋₃₇₅ to a solution of MantATP at $t = \sim 50$ s initiates a fluorescence enhancement as the MantATP binds. Addition of chasing Mg²⁺ATP on the plateau of enhanced fluorescence at $t = \sim 750$ s initiates a decay corresponding to the release of MantADP. Exponential fits to the rising and decay phases yield rate constants $k_{on} = 0.017 \text{ s}^{-1}$ for basal Mg²⁺ADP release and $k_{off} = 0.005 \text{ s}^{-1}$ for Mg²⁺MantADP release. **b)** Stopped flow data for MT activation of Kif15₁₉₋₃₇₅ MantADP release in BRB20 (**o**) and BRB80 for Kif15₁₉₋₃₇₅ (•) and Kif15₁₋₃₇₅ (•). Data for both Kif15₁₋₃₇₅ and Kif15₁₉₋₃₇₅ are fitted

to rectangular hyperbolae to yield estimates for the maximum rate of MT-activated MantADP release and for $K_{0.5,\,MT}$, the apparent Michaelis constant for MT activation. For Kif15₁₉₋₃₇₅, the fitted k_{off} for MantADP release is 1.3 s⁻¹ in BRB20 and 1.5 s⁻¹ in BRB80, with $K_{0.5,MT}=29$ μM and 11 μM , respectively. For Kif15₁₋₃₇₅, the k_{off} is 0.8 s⁻¹ in BRB20, with $K_{0.5,MT}=7\mu M$. The control was carried out with unpolymerised tubulin (\blacksquare) in the presence of Kif15₁₉₋₃₇₅.