Supplementary Material
 Measuring picosecond excited state lifetimes at synchrotron sources

Bertrand Fournier Philip Coppens

March 9, 2012

1 Study of $\tau^{\text {relative }}$ as a function of $\delta t_{\text {max }}^{\text {relative }}$

In section 4.1 of the article, we introduce a quick estimation method of $\tau^{\text {relative }}$ using $\delta t_{\text {max }}^{\text {relative }}$ estimate. Let us name the function f, which gives for each $\delta t_{\max }^{\text {relative }}$ the corresponding $\tau^{\text {relative }}$. There is no analytical expression of f as its values depend on η_{h}. However, some characteristics of f can be derived.
In our analysis we deduce the $\delta t_{\text {max }}^{\text {relative }}$ values for a sampling of $\tau^{\text {relative }} . \delta t_{\text {max }}^{\text {relative }}$ is obtained by minimization of the function G to satisfy (21) for any selected $\tau^{\text {relative }}$

$$
\begin{equation*}
G\left(\delta t_{\max }^{\text {relative }}\right)=\left(\hat{\eta}_{\mathbf{h}}\left(\delta t_{\max }^{\text {relaxive }}, \tau^{\text {relative }}\right)-\tau^{\text {relative }} \frac{1}{\sqrt{2 \pi}} e^{\frac{-\delta t_{\text {mat }}^{\text {relative } 2}}{2}}\right)^{2} \tag{i}
\end{equation*}
$$

We introduce g, the function which for each $\tau^{\text {relative }}$ gives $\delta t_{\max }^{\text {relative }}$. The ($\tau^{\text {relative }}$, $\left.\delta t_{\max }^{\mathrm{r}^{\text {elative }}}\right)$ pairs are used to plot g in the interval $] 0,+\infty[$.
The curve in (Fig. 1) shows that g is continuous and can be differentiated. Moreover, we note, for all $\left.\tau^{\text {relative }} \in\right] 0,+\infty\left[, \delta t_{\text {max }}^{\text {relative }}<\tau^{\text {relative }}\right.$.
The following relation between $\tau^{\text {relative }}$ and $\delta t_{\text {max }}^{\text {relative }}$ can be derived from equations (15) and (21).

$$
\begin{equation*}
\left(\int_{y=U}^{+\infty} e^{-y^{2}} d y\right) e^{U^{2}}=\frac{\tau^{\text {relative }}}{\sqrt{2}} \quad \text { with } \quad U=\frac{1}{\sqrt{2}}\left(\frac{1}{\tau^{\text {relative }}}-\delta t_{\text {max }}^{\text {relative }}\right) \tag{ii}
\end{equation*}
$$

Differentiating (ii) as a function of $\tau^{\text {relative }}$ gives the following differential equation

$$
\begin{equation*}
g^{\prime}\left(\tau^{\text {relative }}\right)=\frac{1}{\tau^{\text {relative }}}\left(\frac{1}{g\left(\tau^{\text {relative }}\right)}-\frac{1}{\tau^{\text {relative }}}\right) \tag{iii}
\end{equation*}
$$

We notice that $g\left(\tau^{\text {relative }}\right)<\tau^{\text {relative }}$ implies $g^{\prime}\left(\tau^{\text {relative }}\right)>0$, for all $\tau^{\text {relative }} \in$ $] 0,+\infty$. Thus, g is monotonically increasing and reversible, and $f=g^{-1}$ exists. To the best of our knowledge this non-linear first-order differential equation can
not be solved. Nevertheless, (ii) and (iii) can be used to study f behavior at $+\infty$ and 0^{+}.

Figure 1: Plot of $\tau^{\text {relative }}$ vs. $\delta t_{\max }^{\text {relative }}$. The orange straight line corresponds to the identity function.

1.1 Asymptotic behavior of f at $+\infty$

We remark that when $\tau \longrightarrow+\infty, \hat{\eta}_{\mathbf{h}}$ approaches a cumulative Gaussian probability density function (c.g.f.). A c.g.f. is monotonically increasing with its maximum at $+\infty$. Therefore, when $\tau^{\text {relative }} \longrightarrow+\infty, \delta_{\max }^{\text {relative }} \longrightarrow+\infty$.

We want to know the asymptotic behavior of g at $+\infty$ and, by the same way, of its reciprocal function f. There are three possible g asymptotic behaviors when $\tau^{\text {relative }} \longrightarrow+\infty[1,5,4]$,

1) $g\left(\tau^{\text {relative }}\right) \in \underset{+\infty}{o}\left(\tau^{\text {relative }}\right)$
2) $g\left(\tau^{\text {relative }}\right) \in \underset{+\infty}{\Theta}\left(\tau^{\text {relative }}\right)$
3) $g\left(\tau^{\text {relative }}\right) \in \underset{+\infty}{\omega}\left(\tau^{\text {relative }}\right)$
4) If we assume $g\left(\tau^{\text {relative }}\right) \in \underset{+\infty}{o}\left(\tau^{\text {relative }}\right)$, which means $g\left(\tau^{\text {relative }}\right) \ll \tau^{\text {relative }}$ when $\tau^{\text {relative }} \longrightarrow+\infty$, the differential equation (iii) implies the following relation

$$
\begin{equation*}
g\left(\tau^{\text {relative }}\right) g^{\prime}\left(\tau^{\text {relative }}\right)=\frac{1}{\tau^{\text {relative }}}+\underset{+\infty}{o}\left(\frac{1}{\tau^{\text {relative }}}\right) \tag{iv}
\end{equation*}
$$

and also,

$$
\begin{equation*}
2 g\left(\tau^{\text {relative }}\right) g^{\prime}\left(\tau^{\text {relative }}\right) \underset{+\infty}{\sim} \frac{2}{\tau^{\text {relative }}} \tag{v}
\end{equation*}
$$

Let us introduce the following functions defined on $] 0 ;+\infty[$ as

$$
\begin{equation*}
F_{1}\left(\tau^{\text {relative }}\right)=g\left(\tau^{\text {relative }}\right)^{2} \quad \text { and } \quad G_{1}\left(\tau^{\text {relative }}\right)=\ln \left(\tau^{\text {relative }}\right) \tag{vi}
\end{equation*}
$$

$\lim _{+\infty} \frac{F^{\prime}\left({ }^{\text {relative }}\right)}{G^{\prime}\left(\tau^{\text {relative }}\right)}=\lim _{+\infty} \frac{g\left(\tau^{\text {relative }}\right) g^{\prime}\left(\tau^{\text {relative }}\right)}{1 / \tau^{\text {reatative }}}=1$
Then, we can apply l'Hôpital's rule [2], $\lim _{+\infty} \frac{F^{\prime}\left(\text { relative }^{\text {ren }}\right)}{G^{\prime}\left(\tau^{\text {relative }}\right)}=\lim _{+\infty} \frac{F\left(\tau^{\text {relative }}\right)}{G\left(\tau^{\text {relative }}\right)}=1$
Therefore, by definition of the equivalence of two functions at $+\infty$,

$$
\begin{equation*}
g\left(\tau^{\text {relative }}\right)^{2} \underset{+\infty}{\sim} 2 \ln \left(\tau^{\text {relative }}\right) \tag{vii}
\end{equation*}
$$

Moreover, the function Square-Root, sqrt, defined on $[0,+\infty[$, is monotonic and $\frac{\operatorname{sqrt}^{\prime}(x)}{\operatorname{sqrt}(x)}=\underset{+\infty}{O}(1 / x)$ and we know $g\left(\tau^{\text {relative }}\right)^{2} \underset{+\infty}{\longrightarrow}+\infty$.
We can apply Entringer's theorem [3] and obtain,

$$
\begin{equation*}
g\left(\tau^{\text {relative }}\right) \underset{+\infty}{\sim} \sqrt{2 \ln \left(\tau^{\text {relative }}\right)} \tag{viii}
\end{equation*}
$$

2) If we assume $g\left(\tau^{\text {relative }}\right) \in \Theta\left(\tau^{\text {relative }}\right), g$ and the identity function share the same order of magnitude at $+\infty$. We already know $g\left(\tau^{\text {relative }}\right)<\tau^{\text {relative }}$ and so, by definition of "Big omega", there is $\left.k_{1} \in\right] 0,+\infty\left[\right.$ such that $k_{1} \tau^{\text {relative }} \leq g\left(\tau^{\text {relative }}\right)$ at $+\infty$.
Thus,

$$
\begin{equation*}
k_{1} \tau^{\text {relative }} \leq g\left(\tau^{\text {relative }}\right)<\tau^{\text {relative }} \tag{ix}
\end{equation*}
$$

Using the differential equation (iii), we obtain at $+\infty$

$$
\begin{equation*}
0<g^{\prime}\left(\tau^{\text {relative }}\right) \leq\left(\frac{1}{k_{1}}-1\right) \frac{1}{\tau^{\text {relative }^{2}}} \tag{x}
\end{equation*}
$$

This satisfies the definition of "Big omicron" relation,

$$
\begin{equation*}
g^{\prime}\left(\tau^{\text {relative }}\right) \in \underset{+\infty}{O}\left(\frac{1}{\tau^{\text {relative }^{2}}}\right) \tag{xi}
\end{equation*}
$$

We note $\lim _{+\infty} \frac{1}{\tau^{\text {relative }}{ }^{2}}=0$, and so $\lim _{+\infty} g^{\prime}\left(\tau^{\text {relative }}\right)=0$.
Let us define the functions F_{2} and G_{2} on $] 0 ;+\infty[$ as

$$
\begin{equation*}
F_{2}\left(\tau^{\text {relative }}\right)=g\left(\tau^{\text {relative }}\right) \quad \text { and } \quad \mathrm{G}_{2}\left(\tau^{\text {relative }}\right)=\tau^{\text {relative }} \tag{xii}
\end{equation*}
$$

We note $F\left(\tau^{\text {relative }}\right) \underset{+\infty}{\longrightarrow}+\infty, G\left(\tau^{\text {relative }}\right) \underset{+\infty}{\longrightarrow}+\infty$ and
$\lim _{+\infty} \frac{\frac{F}{2}_{\prime}^{\left(r^{\text {relative }}\right)}}{G_{2}^{\prime}\left(\tau^{\text {relative }}\right)}=\lim _{+\infty} g^{\prime}\left(\tau^{\text {relative }}\right)=0$
If we apply once again l'Hôpital's rule [2], we obtain
$\lim _{+\infty} \frac{F_{2}\left(\tau^{\text {relative }}\right)}{G_{2}\left(\tau^{\text {relative }}\right)}=\lim _{+\infty} \frac{F_{2}^{\prime}\left(\tau^{\text {relative }}\right)}{G_{2}^{\prime}\left(\tau^{\text {relative }}\right)}=\lim _{+\infty} g^{\prime}\left(\tau^{\text {relative }}\right)=0$
This implies F_{2} is dominated by G_{2} at $+\infty$ or $g\left(\tau^{\text {relative }}\right) \in \underset{+\infty}{o}\left(\tau^{\text {relative }}\right)$.
There is a contradiction with the initial assumption: $g\left(\tau^{\text {relative }}\right) \in \underset{+\infty}{\Theta}\left(\tau^{\text {relative }}\right)$.
3) If we assume $g\left(\tau^{\text {relative }}\right) \in \underset{+\infty}{\omega}\left(\tau^{\text {relative }}\right)$, which means, when $\tau^{\text {relative }} \longrightarrow+\infty, g\left(\tau^{\text {relative }}\right) \gg \tau^{\text {relative }}$, this implies

$$
\begin{equation*}
g^{\prime}\left(\tau^{\text {relative }}\right)=-\frac{1}{\tau^{\text {relative }^{2}}}+\underset{+\infty}{o}\left(\frac{1}{\tau^{\text {relative }^{2}}}\right) \tag{xiii}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\prime}\left(\tau^{\text {relative }}\right)=\underset{+\infty}{O}\left(\frac{1}{\tau^{\text {relative }^{2}}}\right) \tag{xiv}
\end{equation*}
$$

Using the same functions than in the previous case, we obtain a contradiction with the initial assumption.

Finally, the only possible behavior is the first one, $g\left(\tau^{\text {relative }}\right) \underset{+\infty}{\sim} \sqrt{\ln \left(\tau^{\text {relative }}{ }^{2}\right)}$.

More information can be obtained using Gauss error function properties.
We know $\delta_{\max }^{\text {relative }} \underset{+\infty}{\longrightarrow}+\infty$ and $U \underset{+\infty}{\longrightarrow}-\infty$ (ii).
The complementary Gauss error function, noted erfc, is defined as

$$
\begin{equation*}
\operatorname{erfc}(x)=1-\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{y=x}^{+\infty} e^{-y^{2}} d y \tag{xv}
\end{equation*}
$$

and its asymptotic expansion at $+\infty$ is known

$$
\begin{equation*}
\sqrt{\pi} x e^{x^{2}} \operatorname{erfc}(x) \underset{+\infty}{\sim} 1+\sum_{m=1}^{+\infty} \frac{(-1)^{m}(2 m-1)!!}{\left(2 x^{2}\right)^{m}} \tag{xvi}
\end{equation*}
$$

So, at the zero order,

$$
\begin{equation*}
\sqrt{\pi} x e^{x^{2}} \operatorname{erfc}(x) \underset{+\infty}{\sim} 1 \tag{xvii}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\operatorname{erfc}(-x)=1-\operatorname{erf}(-x)=1+\operatorname{erf}(x)=2-\operatorname{erfc}(x) \tag{xviii}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\left(\int_{y=U}^{+\infty} e^{-y^{2}} d y\right) e^{U^{2}} & =\frac{\sqrt{\pi}}{2}\left[2-\int_{y=-U}^{+\infty} e^{-y^{2}} d y\right] e^{U^{2}} \\
& =\sqrt{\pi} e^{U^{2}}-\frac{\sqrt{\pi}}{2}\left(\int_{y=-U}^{+\infty} e^{-y^{2}} d y\right) e^{U^{2}} \tag{xix}\\
& =\sqrt{\pi} e^{U^{2}}-\frac{\sqrt{\pi}}{2}\left(\frac{1}{\sqrt{\pi}(-U)}\right)+\underset{+\infty}{O}\left(\frac{1}{U^{3}}\right) \\
& \sim \sqrt{\pi} e^{U^{2}}
\end{align*}
$$

We can expand the exponential factor, using the expression of U (ii),

$$
\begin{equation*}
\sqrt{\pi} e^{U^{2}}=\sqrt{\pi}\left[e^{\left(\frac{1}{2 \tau^{\text {relative }}{ }^{2}}\right)} e^{\left(\frac{\delta t_{\text {max }}^{\text {relative }}{ }^{2}}{2}\right)} e^{\left(\frac{\delta t_{\text {relative }}}{\tau \text { relative }}\right)}\right] \tag{xx}
\end{equation*}
$$

We know $\frac{1}{2 \tau^{2}} \underset{+\infty}{\longrightarrow} 0$ and the asymptotic behavior of $\delta t_{\text {max }}^{\text {relative }}$,
$\frac{\delta t_{\text {rax }}^{\text {relative }}}{\tau^{\text {relative }}} \underset{+\infty}{\sim} \frac{\sqrt{\ln \left(\tau^{\text {relative } 2)}\right.}}{\tau^{\text {relative }}} \underset{+\infty}{\longrightarrow} 0$
Thus,

$$
\begin{equation*}
\left.\sqrt{\pi} e^{U^{2}} \underset{+\infty}{\sim} \sqrt{\pi} e^{\left(\frac{\delta t_{\text {max }}^{\text {relative } 2}}{2}\right.}\right) \tag{xxi}
\end{equation*}
$$

Using (ii), (xix) and (xxi), we obtain the following equation when $\tau^{\text {relative }} \longrightarrow$ $+\infty$

$$
\begin{equation*}
\left.\tau_{+\infty}^{\text {relative }} \underset{\sim}{\sim} \sqrt{2 \pi} e^{\left(\frac{\delta t_{m a x}^{\text {relative } 2}}{2}\right.}\right) \tag{xxii}
\end{equation*}
$$

and, by the same way, the asymptotic behavior of f when $\delta t_{\max }^{\text {relative }} \longrightarrow+\infty$

$$
\begin{equation*}
\left.f\left(\delta t_{\max }^{\text {relative }}\right) \underset{+\infty}{\sim} \sqrt{2 \pi} e^{\left(\frac{\delta t_{\text {max }}^{\text {relative } 2}}{2}\right.}\right) \tag{xxiii}
\end{equation*}
$$

1.2 Asymptotic behavior of f at 0^{+}

In section 2.1 of the article, we show $\hat{\eta}_{\mathbf{h}}$ is related to an Exponentially Modified Gaussian, E.M.G. For $\left.\delta t^{\text {relative }} \in\right]-\infty,+\infty[$,

$$
\begin{equation*}
\hat{\eta}_{\mathbf{h}}\left(\delta t^{\text {relative }}\right)=K_{\mathbf{h}} \tau^{\text {relative }} \mathbf{E M G}\left(\delta t^{\text {relative }}\right) \tag{xxiv}
\end{equation*}
$$

Considering the expression (xxiv), for all $\left.\tau_{\text {relative }} \in\right] 0,+\infty\left[, \hat{\eta}_{\mathbf{h}}\right.$ and EMG share the same maximum location $\delta t_{\text {max }}^{\text {relative }}$

$$
\begin{equation*}
\delta t_{\max }^{\text {relative }} \hat{\eta}_{\mathbf{h}}=\delta t_{\max }^{\text {relative }} \tag{xxv}
\end{equation*}
$$

Moreover, when $\tau^{\text {relative }}=0$, an E.M.G. function becomes a Gaussian function, while $\delta t_{\max }^{\text {relative }} \hat{\eta}_{\mathrm{h}}$ is a constant function set to zero and consequently has no maximum.
By continuity, $\delta t_{\max }^{\text {relative }}{ }_{\hat{\eta}_{\mathbf{h}}}\left(0^{+}\right)$can be computed

$$
\begin{equation*}
\lim _{0^{+}} \delta t_{\max }^{\text {relative }}{\hat{\eta_{\mathbf{h}}}}\left(\tau^{\text {relative }}\right)=\lim _{0^{+}} \delta t_{\max }^{\text {relative }}{ }_{\text {EMG }}\left(\tau^{\text {relative }}\right)=\delta \text { max }_{\text {relative }}^{\text {EMG }}(0)=0 \tag{xxvi}
\end{equation*}
$$

The behavior of g at 0^{+}can be studied using the same method than at $+\infty$. There are three possibilities of behavior $[1,5,4]$.

1) $g\left(\tau^{\text {relative }}\right)=\underset{0^{+}}{o}\left(\tau^{\text {relative }}\right)$ which means $g\left(\tau^{\text {relative }}\right) \ll \tau^{\text {relative }}$ when $\tau^{\text {relative }} \longrightarrow$ 0^{+}, this implies considering equation (iii)

$$
\begin{equation*}
2 g\left(\tau^{\text {relative }}\right) g^{\prime}\left(\tau^{\text {relative }}\right)-\frac{2}{\tau^{\text {relative }}}=\underset{0^{+}}{o}\left(\frac{1}{\tau^{\text {relative }}}\right) \tag{xxvii}
\end{equation*}
$$

Let us define the functions F_{3} and G_{3} as

$$
\begin{align*}
F_{3}\left(\tau^{\text {relative }}\right)= & 2 g\left(\tau^{\text {relative }}\right)^{2}-2 \ln \left(\tau^{\text {relative }}\right) \\
& \text { and } \tag{xxviii}\\
G_{3}\left(\tau^{\text {relative }}\right)= & \ln \left(\tau^{\text {relative }}\right)
\end{align*}
$$

When $\tau^{\text {relative }} \longrightarrow 0^{+}, g\left(\tau^{\text {relative }}\right) \longrightarrow 0^{+}$and so, $F_{3}\left(\tau^{\text {relative }}\right) \longrightarrow+\infty$ and $G_{3}\left(\tau^{\text {relative }}\right) \longrightarrow-\infty$
Moreover, $\lim _{0^{+}} \frac{F_{3}^{\prime}\left(\tau^{\text {relative }}\right)}{G_{3}^{\prime}\left(\tau^{\text {relative }}\right)}=0 \quad$ and $\quad \lim _{0^{+}} \frac{F_{3}\left(\tau^{\text {relative }}\right)}{G_{3}\left(\tau^{\text {relative }}\right)}=-1$

We can apply l'Hôpital's rule [2], which implies $\lim _{0^{+}} \frac{F_{3}\left(\tau^{\text {relative }}\right)}{G_{3}\left(\tau^{\text {relative }}\right)}=\lim _{0^{+}} \frac{F_{3}^{\prime}\left(\tau^{\text {relative }}\right)}{G_{3}^{\prime}\left(\tau^{\text {relative }}\right)}$ which means $0=-1$. There is a contradiction.
2) $g\left(\tau^{\text {relative }}\right)=\underset{0^{+}}{\omega}\left(\tau^{\text {relative }}\right)$ which means $g\left(\tau^{\text {relative }}\right) \gg \tau^{\text {relative }}$ when $\tau^{\text {relative }} \longrightarrow$ 0^{+}, this implies

$$
\begin{equation*}
g^{\prime}\left(\tau^{\text {relative }}\right)+\frac{1}{\tau^{\text {relative }^{2}}}=\underset{0^{+}}{o}\left(\frac{1}{\tau^{\text {relative }^{2}}}\right) \tag{xxix}
\end{equation*}
$$

Let us introduce the functions F_{4} and G_{4}

$$
\begin{align*}
F_{4}\left(\tau^{\text {relative }}\right)= & g\left(\tau^{\text {relative }}\right)-\frac{1}{\tau^{\text {relative }}} \\
& \text { and } \tag{xxx}\\
G_{4}\left(\tau^{\text {relative }}\right)= & \frac{1}{\tau^{\text {relative }}}
\end{align*}
$$

When $\tau^{\text {relative }} \longrightarrow 0^{+}, g\left(\tau^{\text {relative }}\right) \longrightarrow 0^{+}$and so, $F_{4}\left(\tau^{\text {relative }}\right) \longrightarrow-\infty$ and $G_{4}\left(\tau^{\text {relative }}\right) \longrightarrow-\infty$
Moreover, $\lim _{0^{+}} \frac{F_{4}^{\prime}\left(\tau^{\text {relative }}\right)}{G_{4}^{\prime}\left(\tau^{\text {relative }}\right)}=0$ and $\lim _{0^{+}} \frac{F_{4}\left(\tau^{\text {relative }}\right)}{G_{4}\left(\tau^{\text {relative }}\right)}=1$
Using l'Hôpital's rule [2], the both limits should be equal. There is a contradiction again.
3) The only possible behavior is $g\left(\tau^{\text {relative }}\right) \in \Theta\left(\tau^{\text {relative }}\right)$

When $\tau^{\text {relative }} \longrightarrow 0^{+}, g$ has the order of magnitude than the identity function.
Like at $+\infty$, an equivalence relation for $\delta t_{\max }^{\text {relative }}$ can be obtained at 0^{+}.
When $\tau^{\text {relative }} \longrightarrow 0^{+}, \delta t_{\max }^{\text {relative }} \longrightarrow 0^{+}$and $U \longrightarrow+\infty$.
Therefore, when $\tau^{\text {relative }} \longrightarrow 0^{+}$,

$$
\begin{align*}
\left(\int_{y=U}^{+\infty} e^{-y^{2}} d y\right) e^{U^{2}} & =\frac{\sqrt{\pi}}{2} e^{U^{2}} \operatorname{erfc}(U) \tag{xxxi}\\
& =\frac{\sqrt{\pi}}{2}\left(\frac{1}{\sqrt{\pi} U}\right)\left[1-\frac{1}{2 U^{2}}+\underset{0^{+}}{o}\left(\frac{1}{U^{3}}\right)\right]
\end{align*}
$$

We show previously, $\delta t_{\text {max }}^{\text {relative }} \in \underset{0^{+}}{\Theta}\left(\tau^{\text {relative }}\right)$ at 0^{+}. The Taylor expansion of the function $\tau^{\text {relative }} \longrightarrow U^{-1}$ can be done relatively to $\tau^{\text {relative }}$ and $\delta t_{\text {max }}^{\text {relative }}$, which share the same order of magnitude.

$$
\begin{equation*}
\frac{1}{U}=\sqrt{2} \tau^{\text {relative }} \sum_{k=0}^{\infty}\left(\tau^{\text {relative }} \delta t_{\max }^{\text {relative }}\right)^{k} \tag{xxxii}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{U}=\sqrt{2} \tau^{\text {relative }}\left(1+\tau^{\text {relative }} \delta t_{\max }^{\text {relative }}\right)+O\left(\left(\tau^{\text {relative }} ; \delta t_{\max }^{\text {relative }}\right)^{4}\right) \tag{xxxiii}
\end{equation*}
$$

Note: $O\left(\left(\tau^{\text {relative }} ; \delta t_{\max }^{\text {relative }}\right)^{4}\right)$ means the function can be any ones defined as:
$\tau^{\text {relative }} \longrightarrow \tau^{\text {relative }^{k}} \delta t_{\text {max }}^{\text {relative }}{ }^{4-k}$ with $k \in[0,1,2,3,4]$.
Then, the expansion (xxxi) becomes

$$
\begin{equation*}
\left.\left(\int_{y=U}^{+\infty} e^{-y^{2}} d y\right) e^{U^{2}}=\frac{1}{\sqrt{2}}\left(\tau^{\text {relative }}+\tau^{\text {relative }}{ }^{2} \delta t_{\max }^{\text {relative }}-\tau^{\text {relative }{ }^{3}}\right)\right)+O\left(\left(\tau^{\text {relative }} ; \delta t_{\max }^{\text {relative }}\right)^{4}\right) \tag{xxxiv}
\end{equation*}
$$

which gives using the relation (ii),
$\left.\frac{\tau^{\text {relative }}}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\tau^{\text {relative }}+\tau^{\text {relative }^{2}} \delta t_{\max }^{\text {relative }}-\tau^{\text {relative }{ }^{3}}\right)\right)+O\left(\left(\tau^{\text {relative }} ; \delta t_{\max }^{\text {relative }}\right)^{4}\right)$
(xxxv)

After reducing the expression, we obtain

$$
\begin{equation*}
\tau^{\text {relative }}=\delta t_{\max }^{\text {relative }}+\underset{0^{+}}{O}\left(\left(\tau^{\text {relative }} ; \delta t_{\max }^{\text {relative }}\right)^{2}\right) \tag{xxxvi}
\end{equation*}
$$

Finally, when $\tau^{\text {relative }} \longrightarrow 0^{+}$

$$
\begin{equation*}
\tau_{\max }^{\text {relative }} \underset{0^{+}}{\sim} \delta t_{\max }^{\text {relative }} \tag{xxxvii}
\end{equation*}
$$

which implies, when $\delta t_{\text {max }}^{\text {relative }} \longrightarrow 0^{+}$

$$
\begin{equation*}
f\left(\delta t_{\max }^{\text {relative }} \underset{0^{+}}{\sim} \delta t_{\max }^{\text {relative }}\right. \tag{xxxviii}
\end{equation*}
$$

References

[1] Paul G. H. Bachmann. Die analytische Zahlentheorie, pt. 2. Leipzig: B. G. Teubner, 1894.
[2] Guillaume-Franois-Antoine de L'Hospital. Analyse des infiniment petits, pour l'intelligence des lignes courbes. Paris, Imprimerie royale, 1696.
[3] R. C. Entringer. Functions and inverses of asymptotic functions. The American Mathematical Monthly, 74(9):1095-1097, 1967.
[4] Donald E. Knuth. Big Omicron and big Omega and big Theta. ACM SIGACT News, 8(2):18-24, April-June 1976.
[5] Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen, 2 vols. Leipzig: B. G. Teubner, 1909.

