Supplementary Material Measuring picosecond excited state lifetimes at synchrotron sources

Bertrand Fournier Philip Coppens

March 9, 2012

Study of τ^{relative} as a function of $\delta t_{\max}^{\text{relative}}$ 1

In section 4.1 of the article, we introduce a quick estimation method of τ^{relative} using $\delta t_{\max}^{\text{relative}}$ estimate. Let us name the function f, which gives for each $\delta t_{\max}^{\text{relative}}$ the corresponding τ^{relative} . There is no analytical expression of f as its values depend on $\hat{\eta}_{\mathbf{h}}$. However, some characteristics of f can be derived. In our analysis we deduce the $\delta t_{\max}^{\text{relative}}$ values for a sampling of τ^{relative} . $\delta t_{\max}^{\text{relative}}$ is obtained by minimization of the function G to satisfy (21) for any selected τ^{relative}

$$G(\delta t_{\max}^{\text{relative}}) = \left(\hat{\eta}_{\mathbf{h}}(\delta t_{\max}^{\text{relative}}, \tau^{\text{relative}}) - \tau^{\text{relative}} \frac{1}{\sqrt{2\pi}} e^{\frac{-\delta t_{\max}^{\text{relative}^2}}{2}}\right)^2 \quad (i)$$

We introduce g, the function which for each τ^{relative} gives $\delta t_{\text{max}}^{\text{relative}}$. The (τ^{relative} , $\delta t_{\max}^{\text{relative}}$) pairs are used to plot g in the interval $]0, +\infty[$.

The curve in (Fig. 1) shows that g is continuous and can be differentiated. Moreover, we note, for all $\tau^{\text{relative}} \in]0, +\infty[, \delta t_{\max}^{\text{relative}} < \tau^{\text{relative}}]$. The following relation between τ^{relative} and $\delta t_{\max}^{\text{relative}}$ can be derived from equa-

tions (15) and (21).

$$\left(\int_{y=U}^{+\infty} e^{-y^2} dy\right) e^{U^2} = \frac{\tau^{\text{relative}}}{\sqrt{2}} \quad \text{with} \quad U = \frac{1}{\sqrt{2}} \left(\frac{1}{\tau^{\text{relative}}} - \delta t_{\text{max}}^{\text{relative}}\right) \quad (\text{ii})$$

Differentiating (ii) as a function of τ^{relative} gives the following differential equation

$$g'(\tau^{\text{relative}}) = \frac{1}{\tau^{\text{relative}}} \left(\frac{1}{g(\tau^{\text{relative}})} - \frac{1}{\tau^{\text{relative}}} \right)$$
(iii)

We notice that $q(\tau^{\text{relative}}) < \tau^{\text{relative}}$ implies $q'(\tau^{\text{relative}}) > 0$, for all $\tau^{\text{relative}} \in$ $[0, +\infty)$. Thus, g is monotonically increasing and reversible, and $f = g^{-1}$ exists. To the best of our knowledge this non-linear first-order differential equation can not be solved. Nevertheless, (ii) and (iii) can be used to study f behavior at $+\infty$ and $0^+.$

Figure 1: Plot of τ^{relative} vs. $\delta t_{\text{max}}^{\text{relative}}$. The orange straight line corresponds to the identity function.

1.1 Asymptotic behavior of f at $+\infty$

We remark that when $\tau \longrightarrow +\infty$, $\hat{\eta}_{\mathbf{h}}$ approaches a cumulative Gaussian probability density function (c.g.f.). A c.g.f. is monotonically increasing with its maximum at $+\infty$. Therefore, when $\tau^{\text{relative}} \longrightarrow +\infty$, $\delta^{\text{relative}}_{\max} \longrightarrow +\infty$.

We want to know the asymptotic behavior of g at $+\infty$ and, by the same way, of its reciprocal function f. There are three possible g asymptotic behaviors when $\tau^{\text{relative}} \longrightarrow +\infty$ [1, 5, 4],

$$1)g(\tau^{\text{relative}}) \in \underset{+\infty}{o}(\tau^{\text{relative}})$$
$$2)g(\tau^{\text{relative}}) \in \underset{+\infty}{\Theta}(\tau^{\text{relative}})$$
$$3)g(\tau^{\text{relative}}) \in \underset{+\infty}{\omega}(\tau^{\text{relative}})$$

1) If we assume $g(\tau^{\text{relative}}) \in \mathop{o}_{+\infty} (\tau^{\text{relative}})$, which means $g(\tau^{\text{relative}}) \ll \tau^{\text{relative}}$ when $\tau^{\text{relative}} \longrightarrow +\infty$, the differential equation (iii) implies the following relation

$$g(\tau^{\text{relative}})g'(\tau^{\text{relative}}) = \frac{1}{\tau^{\text{relative}}} + \mathop{o}_{+\infty}\left(\frac{1}{\tau^{\text{relative}}}\right)$$
(iv)

and also,

$$2g(\tau^{\text{relative}})g'(\tau^{\text{relative}}) \underset{+\infty}{\sim} \frac{2}{\tau^{\text{relative}}}$$
 (v)

Let us introduce the following functions defined on $]0; +\infty[$ as

$$F_1(\tau^{\text{relative}}) = g(\tau^{\text{relative}})^2$$
 and $G_1(\tau^{\text{relative}}) = \ln(\tau^{\text{relative}})$ (vi)

When $\tau^{\text{relative}} \longrightarrow +\infty$, the both functions tend to $+\infty$ and also

$$\lim_{t\to\infty} \frac{F'(\tau^{\text{relative}})}{G'(\tau^{\text{relative}})} = \lim_{t\to\infty} \frac{g(\tau^{\text{relative}})g'(\tau^{\text{relative}})}{1/\tau^{\text{relative}}} = 1$$

Then, we can apply l'Hôpital's rule [2],
$$\lim_{t\to\infty} \frac{F'(\tau^{\text{relative}})}{G'(\tau^{\text{relative}})} = \lim_{t\to\infty} \frac{F(\tau^{\text{relative}})}{G(\tau^{\text{relative}})} = 1$$

Therefore, by definition of the equivalence of two functions at $+\infty$,

$$g(\tau^{\text{relative}})^2 \underset{+\infty}{\sim} 2\ln(\tau^{\text{relative}})$$
 (vii)

Moreover, the function Square-Root, **sqrt**, defined on $[0, +\infty[$, is monotonic and $\frac{\operatorname{sqrt}'(x)}{\operatorname{sqrt}(x)} = \mathop{O}_{+\infty}(1/x)$ and we know $g(\tau^{\operatorname{relative}})^2 \xrightarrow[+\infty]{} +\infty$. We can apply Entringer's theorem [3] and obtain,

$$g(\tau^{\text{relative}}) \underset{+\infty}{\sim} \sqrt{2\ln(\tau^{\text{relative}})}$$
 (viii)

2) If we assume $g(\tau^{\text{relative}}) \in \Theta(\tau^{\text{relative}})$, g and the identity function share the same order of magnitude at $+\infty$. We already know $g(\tau^{\text{relative}}) < \tau^{\text{relative}}$ and so, by definition of "Big omega", there is $k_1 \in]0, +\infty[$ such that $k_1\tau^{\text{relative}} \leq g(\tau^{\text{relative}})$ at $+\infty$.

Thus,

$$k_1 \tau^{\text{relative}} \leq g(\tau^{\text{relative}}) < \tau^{\text{relative}}$$
 (ix)

Using the differential equation (iii), we obtain at $+\infty$

$$0 < g'(\tau^{\text{relative}}) \le \left(\frac{1}{k_1} - 1\right) \frac{1}{\tau^{\text{relative}^2}} \tag{x}$$

This satisfies the definition of "Big omicron" relation,

$$g'(\tau^{\text{relative}}) \in \mathop{O}_{+\infty}\left(\frac{1}{\tau^{\text{relative}^2}}\right)$$
 (xi)

We note $\lim_{+\infty} \frac{1}{\tau^{\text{relative}^2}} = 0$, and so $\lim_{+\infty} g'(\tau^{\text{relative}}) = 0$.

Let us define the functions F_2 and G_2 on $]0; +\infty[$ as

$$F_2(\tau^{\text{relative}}) = g(\tau^{\text{relative}}) \text{ and } G_2(\tau^{\text{relative}}) = \tau^{\text{relative}}$$
 (xii)

We note $F(\tau^{\text{relative}}) \xrightarrow[+\infty]{} +\infty$, $G(\tau^{\text{relative}}) \xrightarrow[+\infty]{} +\infty$ and $\lim_{+\infty} \frac{F'_2(\tau^{\text{relative}})}{G'_2(\tau^{\text{relative}})} = \lim_{+\infty} g'(\tau^{\text{relative}}) = 0$ If we apply once again l'Hôpital's rule [2], we obtain $\lim_{+\infty} \frac{F_2(\tau^{\text{relative}})}{G_2(\tau^{\text{relative}})} = \lim_{+\infty} \frac{F'_2(\tau^{\text{relative}})}{G'_2(\tau^{\text{relative}})} = \lim_{+\infty} g'(\tau^{\text{relative}}) = 0$

This implies F_2 is dominated by G_2 at $+\infty$ or $g(\tau^{\text{relative}}) \in \underset{+\infty}{o}(\tau^{\text{relative}})$. There is a contradiction with the initial assumption: $g(\tau^{\text{relative}}) \in \underset{+\infty}{\Theta}(\tau^{\text{relative}})$.

3) If we assume $g(\tau^{\text{relative}}) \in \underset{+\infty}{\omega}(\tau^{\text{relative}})$, which means, when $\tau^{\text{relative}} \longrightarrow +\infty, g(\tau^{\text{relative}}) \gg \tau^{\text{relative}}$, this implies

$$g'(\tau^{\text{relative}}) = -\frac{1}{\tau^{\text{relative}^2}} + \mathop{o}_{+\infty} \left(\frac{1}{\tau^{\text{relative}^2}}\right) \tag{xiii}$$

and

$$g'(\tau^{\text{relative}}) = \mathop{O}_{+\infty}\left(\frac{1}{\tau^{\text{relative}^2}}\right)$$
 (xiv)

Using the same functions than in the previous case, we obtain a contradiction with the initial assumption.

Finally, the only possible behavior is the first one, $g(\tau^{\text{relative}})_{+\infty} \sim \sqrt{\ln(\tau^{\text{relative}^2})}$.

More information can be obtained using Gauss error function properties. We know $\delta_{\max}^{\text{relative}} \xrightarrow{+\infty} + \infty$ and $U \xrightarrow{+\infty} - \infty$ (ii). The complementary Gauss error function, noted **erfc**, is defined as

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{y=x}^{+\infty} e^{-y^2} dy \qquad (xv)$$

and its asymptotic expansion at $+\infty$ is known

$$\sqrt{\pi}xe^{x^2}\operatorname{erfc}(x) \underset{+\infty}{\sim} 1 + \sum_{m=1}^{+\infty} \frac{(-1)^m (2m-1)!!}{(2x^2)^m}$$
 (xvi)

So, at the zero order,

$$\sqrt{\pi}xe^{x^2}\mathbf{erfc}(x) \mathop{\sim}_{+\infty} 1$$
 (xvii)

Moreover,

$$\operatorname{erfc}(-x) = 1 - \operatorname{erf}(-x) = 1 + \operatorname{erf}(x) = 2 - \operatorname{erfc}(x)$$
(xviii)

Therefore,

$$\left(\int_{y=U}^{+\infty} e^{-y^2} dy \right) e^{U^2} = \frac{\sqrt{\pi}}{2} \left[2 - \int_{y=-U}^{+\infty} e^{-y^2} dy \right] e^{U^2}$$

= $\sqrt{\pi} e^{U^2} - \frac{\sqrt{\pi}}{2} \left(\int_{y=-U}^{+\infty} e^{-y^2} dy \right) e^{U^2}$ (xix)
= $\sqrt{\pi} e^{U^2} - \frac{\sqrt{\pi}}{2} \left(\frac{1}{\sqrt{\pi}(-U)} \right) + \mathop{O}_{+\infty} \left(\frac{1}{U^3} \right)$
 $\stackrel{\sim}{+\infty} \sqrt{\pi} e^{U^2}$

We can expand the exponential factor, using the expression of U (ii),

$$\sqrt{\pi}e^{U^2} = \sqrt{\pi} \left[e^{\left(\frac{1}{2\tau^{\text{relative}^2}}\right)} e^{\left(\frac{\delta t^{\text{relative}^2}}{2}\right)} e^{\left(\frac{\delta t^{\text{relative}}}{\tau^{\text{relative}}}\right)} \right] \tag{xx}$$

We know $\frac{1}{2\tau^2} \xrightarrow{\to 0} 0$ and the asymptotic behavior of $\delta t_{\max}^{\text{relative}}$, $\frac{\delta t_{\max}^{\text{relative}}}{\tau^{\text{relative}}} \underset{+\infty}{\sim} \frac{\sqrt{\ln(\tau^{\text{relative}^2})}}{\tau^{\text{relative}}} \xrightarrow{\to 0} 0$ Thus Thus,

$$\sqrt{\pi}e^{U^2} \underset{+\infty}{\sim} \sqrt{\pi}e^{\left(\frac{\delta t^{\text{relative}^2}}{2}\right)}$$
 (xxi)

Using (ii), (xix) and (xxi), we obtain the following equation when $\tau^{\text{relative}} \longrightarrow$ $+\infty$

$$\tau^{\text{relative}} \underset{+\infty}{\sim} \sqrt{2\pi} e^{\left(\frac{\delta t_{\text{max}}^{\text{relative}^2}}{2}\right)}$$
 (xxii)

and, by the same way, the asymptotic behavior of f when $\delta t_{\max}^{\text{relative}} \longrightarrow +\infty$

$$f(\delta t_{\max}^{\text{relative}}) \underset{+\infty}{\sim} \sqrt{2\pi} e^{\left(\frac{\delta t_{\max}^{\text{relative}^2}}{2}\right)}$$
 (xxiii)

Asymptotic behavior of f at 0^+ 1.2

In section 2.1 of the article, we show $\hat{\eta}_{\mathbf{h}}$ is related to an Exponentially Modified Gaussian, E.M.G. For $\delta t^{\text{relative}} \in] - \infty, +\infty[$,

$$\hat{\eta}_{\mathbf{h}}(\delta t^{\text{relative}}) = K_{\mathbf{h}} \tau^{\text{relative}} \mathbf{EMG}(\delta t^{\text{relative}}) \tag{xxiv}$$

Considering the expression (xxiv), for all $\tau_{\text{relative}} \in]0, +\infty[, \hat{\eta}_{\mathbf{h}} \text{ and } \mathbf{EMG} \text{ share}$ the same maximum location $\delta t_{\rm max}^{\rm relative}$

$$\delta t_{\max}^{\text{relative}}{}_{\hat{\eta}_{\mathbf{h}}} = \delta t_{\max}^{\text{relative}}{}_{\mathbf{EMG}} \tag{xxv}$$

Moreover, when $\tau^{\text{relative}} = 0$, an E.M.G. function becomes a Gaussian function, while $\delta t_{\max}^{\text{relative}}{}_{\hat{\eta}_{\mathbf{h}}}$ is a constant function set to zero and consequently has no maximum.

By continuity, $\delta t^{\rm relative}_{\max \ \hat{\eta}_{\mathbf{h}}}(0^+)$ can be computed

$$\lim_{0^+} \delta t_{\max}^{\text{relative}}{}_{\hat{\eta}_{\mathbf{h}}}(\tau^{\text{relative}}) = \lim_{0^+} \delta t_{\max}^{\text{relative}}{}_{\mathbf{EMG}}(\tau^{\text{relative}}) = \delta t_{\max}^{\text{relative}}{}_{\mathbf{EMG}}(0) = 0$$
(xxvi)

The behavior of g at 0^+ can be studied using the same method than at $+\infty$. There are three possibilities of behavior [1, 5, 4].

1) $g(\tau^{\text{relative}}) = \mathop{o}_{0^+}(\tau^{\text{relative}})$ which means $g(\tau^{\text{relative}}) \ll \tau^{\text{relative}}$ when $\tau^{\text{relative}} \longrightarrow 0^+$ 0^+ , this implies considering equation (iii)

$$2g(\tau^{\text{relative}})g'(\tau^{\text{relative}}) - \frac{2}{\tau^{\text{relative}}} = \mathop{o}_{0^+} \left(\frac{1}{\tau^{\text{relative}}}\right)$$
(xxvii)

Let us define the functions F_3 and G_3 as

$$\begin{split} F_{3}(\tau^{\text{relative}}) = & 2g(\tau^{\text{relative}})^{2} - 2\ln(\tau^{\text{relative}}) \\ & \text{and} \\ G_{3}(\tau^{\text{relative}}) = & \ln(\tau^{\text{relative}}) \end{split}$$
(xxviii)

When $\tau^{\text{relative}} \longrightarrow 0^+$, $g(\tau^{\text{relative}}) \longrightarrow 0^+$ and so, $F_3(\tau^{\text{relative}}) \longrightarrow +\infty$ and $G_3(\tau^{\text{relative}}) \longrightarrow -\infty$ Moreover, $\lim_{0^+} \frac{F'_3(\tau^{\text{relative}})}{G'_3(\tau^{\text{relative}})} = 0$ and $\lim_{0^+} \frac{F_3(\tau^{\text{relative}})}{G_3(\tau^{\text{relative}})} = -1$

We can apply l'Hôpital's rule [2], which implies $\lim_{0^+} \frac{F_3(\tau^{\text{relative}})}{G_3(\tau^{\text{relative}})} = \lim_{0^+} \frac{F'_3(\tau^{\text{relative}})}{G'_3(\tau^{\text{relative}})}$ which means 0 = -1. There is a contradiction.

2) $g(\tau^{\text{relative}}) = \underset{0^+}{\omega}(\tau^{\text{relative}})$ which means $g(\tau^{\text{relative}}) \gg \tau^{\text{relative}}$ when $\tau^{\text{relative}} \longrightarrow$ 0^+ , this implies

$$g'(\tau^{\text{relative}}) + \frac{1}{\tau^{\text{relative}^2}} = \mathop{o}_{0^+} \left(\frac{1}{\tau^{\text{relative}^2}}\right)$$
 (xxix)

Let us introduce the functions F_4 and G_4

$$F_4(\tau^{\text{relative}}) = g(\tau^{\text{relative}}) - \frac{1}{\tau^{\text{relative}}}$$

and
$$G_4(\tau^{\text{relative}}) = -\frac{1}{\tau^{\text{relative}}}$$
(xxx)

When $\tau^{\text{relative}} \longrightarrow 0^+$, $g(\tau^{\text{relative}}) \longrightarrow 0^+$ and so, $F_4(\tau^{\text{relative}}) \longrightarrow -\infty$ and $G_4(\tau^{\text{relative}}) \longrightarrow -\infty$ Moreover, $\lim_{0^+} \frac{F'_4(\tau^{\text{relative}})}{G'_4(\tau^{\text{relative}})} = 0$ and $\lim_{0^+} \frac{F_4(\tau^{\text{relative}})}{G_4(\tau^{\text{relative}})} = 1$ Using l'Hôpital's rule [2], the both limits should be equal. There is a contradic-

tion again.

3) The only possible behavior is $g(\tau^{\text{relative}}) \in \Theta(\tau^{\text{relative}})$ When $\tau^{\text{relative}} \longrightarrow 0^+$, g has the order of magnitude than the identity function.

Like at $+\infty$, an equivalence relation for $\delta t_{\max}^{\text{relative}}$ can be obtained at 0^+ .

When $\tau^{\text{relative}} \longrightarrow 0^+$, $\delta t_{\max}^{\text{relative}} \longrightarrow 0^+$ and $U \longrightarrow +\infty$. Therefore, when $\tau^{\text{relative}} \longrightarrow 0^+$,

$$\left(\int_{y=U}^{+\infty} e^{-y^2} dy\right) e^{U^2} = \frac{\sqrt{\pi}}{2} e^{U^2} \operatorname{erfc}(U)$$

= $\frac{\sqrt{\pi}}{2} \left(\frac{1}{\sqrt{\pi}U}\right) \left[1 - \frac{1}{2U^2} + \mathop{o}_{0^+}\left(\frac{1}{U^3}\right)\right]$ (xxxi)

We show previously, $\delta t_{\max}^{\text{relative}} \in \bigoplus_{0^+} (\tau^{\text{relative}})$ at 0^+ . The Taylor expansion of the function $\tau^{\text{relative}} \longrightarrow U^{-1}$ can be done relatively to τ^{relative} and $\delta t_{\text{max}}^{\text{relative}}$, which share the same order of magnitude.

$$\frac{1}{U} = \sqrt{2}\tau^{\text{relative}} \sum_{k=0}^{\infty} (\tau^{\text{relative}} \delta t_{\max}^{\text{relative}})^k \qquad (\text{xxxii})$$

$$\frac{1}{U} = \sqrt{2}\tau^{\text{relative}} \left(1 + \tau^{\text{relative}} \delta t_{\text{max}}^{\text{relative}}\right) + O((\tau^{\text{relative}}; \delta t_{\text{max}}^{\text{relative}})^4) \qquad (\text{xxxiii})$$

Note: $O((\tau^{\text{relative}}; \delta t_{\max}^{\text{relative}})^4)$ means the function can be any ones defined as: $\tau^{\text{relative}} \longrightarrow \tau^{\text{relative}^k} \delta t_{\max}^{\text{relative}^{4-k}}$ with $k \in [0, 1, 2, 3, 4]$.

Then, the expansion (xxxi) becomes

$$\left(\int_{y=U}^{+\infty} e^{-y^2} dy\right) e^{U^2} = \frac{1}{\sqrt{2}} \left(\tau^{\text{relative}} + \tau^{\text{relative}^2} \delta t_{\max}^{\text{relative}} - \tau^{\text{relative}^3})\right) + O((\tau^{\text{relative}}; \delta t_{\max}^{\text{relative}})^4)$$
(xxxiv)

which gives using the relation (ii),

$$\frac{\tau^{\text{relative}}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\tau^{\text{relative}} + \tau^{\text{relative}^2} \delta t_{\text{max}}^{\text{relative}} - \tau^{\text{relative}^3} \right) + O((\tau^{\text{relative}}; \delta t_{\text{max}}^{\text{relative}})^4)$$
(xxxv)

After reducing the expression, we obtain

$$\tau^{\text{relative}} = \delta t_{\text{max}}^{\text{relative}} + \mathop{O}_{0^+}((\tau^{\text{relative}}; \delta t_{\text{max}}^{\text{relative}})^2)$$
(xxxvi)

Finally, when $\tau^{\text{relative}} \longrightarrow 0^+$

$$\tau_{\max}^{\text{relative}} \mathop{\sim}\limits_{0^+} \delta t_{\max}^{\text{relative}} \tag{xxxvii}$$

which implies, when $\delta t_{\rm max}^{\rm relative} \longrightarrow 0^+$

$$f(\delta t_{\max}^{\text{relative}}) \mathop{\sim}\limits_{0^+} \delta t_{\max}^{\text{relative}} \tag{xxxviii}$$

References

- Paul G. H. Bachmann. Die analytische Zahlentheorie, pt. 2. Leipzig: B. G. Teubner, 1894.
- [2] Guillaume-Franois-Antoine de L'Hospital. Analyse des infiniment petits, pour l'intelligence des lignes courbes. Paris, Imprimerie royale, 1696.
- [3] R. C. Entringer. Functions and inverses of asymptotic functions. The American Mathematical Monthly, 74(9):1095–1097, 1967.
- [4] Donald E. Knuth. Big Omicron and big Omega and big Theta. ACM SIGACT News, 8(2):18–24, April-June 1976.
- [5] Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen, 2 vols. Leipzig: B. G. Teubner, 1909.