Aricescu, A.R., Lu, W. and Jones, E.Y. "A time and cost efficient system for high level protein production in mammalian cells"

Supplementary information: vector maps

MCS :
*BsmBI [*E0RI [$\quad \begin{gathered}\text { *Acc65I } \\ \text { KpnI }\end{gathered} \quad$ SacI \quad *NotI $\quad \begin{aligned} & \text { SphI } \\ & \text { *XhoI }\end{aligned}$

ト1730 ।

For secreted constructs, a vector termed pHLsec is available. It is based on the pLEXm backbone, the MCS however was reduced when several new features were introduced:

```
-a Kozak sequence;
-a secretion signal sequence;
-a C-terminal K_His6 tag.
```

Constructs can be cloned into this vector, preserving and making use of the features listed above, by using the Agel (compatible with Xmal, BspEl, NgoM IV) and Kpnl (isoschizomer Acc65I is compatible with BsiWI and BsrGI) sites.

EcoRI HindIIIKozak M G I L P S P G M P A L L GAATTCAAGCTTGCCACCATGGGGATCCTTCCCAGCCCTGGGATGCCTGCGCTGCTCTCC
$\begin{array}{llllllllllllllllll}\text { L } & V & S & L & L & S & V & L & L & M & G & C & V & A & E & T & G\end{array}$ CTCGTGAGCCTTCTCTCCGTGCTGCTGATGGGTTGCGTAGCTGAAACCGGT...insert...
$\begin{array}{llllllllllll}\mathrm{G} & \mathrm{T} & \mathrm{K} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \text { * } & * & \text { XhoI }\end{array}$ GGTACCAAGCACCACCATCACCATCACTAATGATCACTCGAG

Fc-tagged constructs, allowing purification of fusion proteins on Protein A affinity columns, can be expressed using the pHL-FcHis vector.
The vector is based on the pLEXm backbone and it contains a 3C protease cleavage site followed by the human IgG $\gamma 1$ hinge and Fc regions and finally a KHis6 tag, all cloned between the Kpnl site and the Xhol site.

Constructs can be cloned into this vector, preserving and making use of the features listed above, by using EcoRI (compatible with Mfel) and Kpnl (isoschizomer Acc65I is compatible with BsiWI and BsrGl) sites or by ligation-independent cloning.

```
EcoRI
GAATTC
insert
```

KpnI
$\begin{array}{llllllllllllllllllll}G & T & L & E & V & L & F & Q & G & P & K & S & C & D & K & T & H & T & C & P\end{array}$ GGTACCCTGGAGGTGCTGTTCCAGGGCCCCAAATCTTGTGACAAAACTCACACATGCCCA $\begin{array}{llllllllllllllllllll}\mathrm{P} & \mathrm{C} & \mathrm{P} & \mathrm{A} & \mathrm{P} & \mathrm{E} & \mathrm{L} & \mathrm{L} & \mathrm{G} & \mathrm{G} & \mathrm{P} & \mathbf{S} & \mathrm{V} & \mathrm{F} & \mathrm{L} & \mathrm{F} & \mathrm{P} & \mathrm{P} & \mathrm{K} & \mathrm{P}\end{array}$ CCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCC
$\begin{array}{llllllllllllllllllll}\mathrm{K} & \mathrm{D} & \mathrm{T} & \mathrm{L} & \mathrm{M} & \mathrm{I} & \mathrm{S} & \mathrm{R} & \mathrm{T} & \mathrm{P} & \mathrm{E} & \mathrm{V} & \mathrm{T} & \mathrm{C} & \mathrm{V} & \mathrm{V} & \mathrm{V} & \mathrm{D} & \mathrm{V} & \mathrm{S}\end{array}$ AAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGC
$\begin{array}{llllllllllllllllllll}\text { H } & \mathrm{E} & \mathrm{D} & \mathbf{P} & \mathrm{E} & \mathrm{V} & \mathrm{K} & \mathrm{F} & \mathrm{N} & \mathrm{W} & \mathrm{Y} & \mathrm{V} & \mathrm{D} & \mathrm{G} & \mathrm{V} & \mathrm{E} & \mathrm{V} & \mathrm{H} & \mathrm{N} & \mathrm{A}\end{array}$ CACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC $\begin{array}{llllllllllllllllllll}\mathrm{K} & \mathrm{T} & \mathrm{K} & \mathrm{P} & \mathrm{R} & \mathrm{E} & \mathrm{E} & \mathbf{Q} & \mathrm{Y} & \mathrm{N} & \mathrm{S} & \mathrm{T} & \mathrm{Y} & \mathrm{R} & \mathrm{V} & \mathrm{V} & \mathrm{S} & \mathrm{V} & \mathrm{L} & \mathrm{T}\end{array}$ AAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACC $\begin{array}{llllllllllllllllllll}V & \mathrm{~L} & \mathrm{H} & \mathrm{Q} & \mathrm{D} & \mathrm{W} & \mathrm{L} & \mathbf{N} & \mathbf{G} & \mathrm{K} & \mathrm{E} & \mathbf{Y} & \mathrm{K} & \mathrm{C} & \mathrm{K} & \mathrm{V} & \mathbf{S} & \mathrm{N} & \mathrm{K} & \mathrm{A}\end{array}$ GTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCC
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{P} & \mathrm{A} & \mathrm{P} & \mathrm{I} & \mathrm{E} & \mathrm{K} & \mathrm{T} & \mathrm{I} & \mathbf{S} & \mathrm{K} & \mathrm{A} & \mathrm{K} & \mathrm{G} & \mathbf{Q} & \mathrm{P} & \mathrm{R} & \mathrm{E} & \mathrm{P} & \mathbf{Q}\end{array}$ CTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG $\begin{array}{llllllllllllllllllll}\mathrm{V} & \mathrm{Y} & \mathrm{T} & \mathrm{L} & \mathrm{P} & \mathrm{P} & \mathrm{S} & \mathrm{R} & \mathrm{D} & \mathrm{E} & \mathrm{L} & \mathrm{T} & \mathrm{K} & \mathrm{N} & \mathrm{Q} & \mathrm{V} & \mathrm{S} & \mathrm{L} & \mathrm{T} & \mathrm{C}\end{array}$ GTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGC
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{V} & \mathrm{K} & \mathrm{G} & \mathrm{F} & \mathrm{Y} & \mathrm{P} & \mathrm{S} & \mathrm{D} & \mathrm{I} & \mathbf{A} & \mathrm{V} & \mathrm{E} & \mathrm{W} & \mathrm{E} & \mathbf{S} & \mathrm{N} & \mathrm{G} & \mathrm{Q} & \mathrm{P}\end{array}$ CTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG $\begin{array}{llllllllllllllllllll}\mathbf{E} & \mathbf{N} & \mathbf{N} & \mathbf{Y} & \mathrm{K} & \mathbf{A} & \mathbf{T} & \mathbf{P} & \mathbf{P} & \mathrm{V} & \mathrm{L} & \mathrm{D} & \mathbf{S} & \mathrm{D} & \mathbf{G} & \mathbf{S} & \mathrm{F} & \mathrm{F} & \mathrm{L} & \mathbf{Y}\end{array}$ GAGAACAACTACAAGGCCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC $\begin{array}{llllllllllllllllllll}S & K & L & T & V & D & K & S & R & W & Q & Q & G & N & V & F & S & C & S & V\end{array}$ AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTG $\begin{array}{llllllllllllllllllll}\mathbf{M} & \mathrm{H} & \mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{H} & \mathrm{N} & \mathrm{H} & \mathbf{Y} & \mathrm{T} & \mathrm{Q} & \mathrm{K} & \mathrm{S} & \mathrm{L} & \mathrm{S} & \mathrm{L} & \mathrm{S} & \mathrm{P} & \mathrm{G} & \mathrm{K}\end{array}$ ATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA H H H H H H * \quad HhoI

Supplementary information: Page 3

Biotinylated constructs (for surface plasmon resonance binding experiments for example, see Aricescu et al., 2006) can be expressed using the vector termed pHL-Avitag3.
The vector is based on the pLEXm backbone and it contains a GGS linker region followed by the biotin ligase [BirA] recognition site and finally a KHis6 tag, all cloned between the Kpnl site and the Xhol site.

Constructs can be cloned into this vector, preserving and making use of the features listed above, by using EcoRl (compatible with Mfel) and Kpnl (isoschizomer Acc65I is compatible with BsiWI and BsrGI) sites or by ligationindependent cloning.

```
EcoRI
GAATTC ......................insert
KpnI
    G T G G S G G S G L N N D I I F E E A O N K I I E
GGTACCGGAGGTTCCGGTGGTTCCGGTCTGAATGATATCTTTGAAGCTCAGAAGATTGAA
    W H E G R T K H H H H H H H * * XhoI
TGGCATGAAGGACGTACCAAGCACCACCATCACCATCACTAATGATCACTCGAG
```


Reference

Aricescu, A. R., Hon, W. C., Siebold, C., Lu, W., van der Merwe, P. A. \& Jones, E. Y. (2006). EMBO J 25, 701-712.

