SUPPLEMENTARY DATA

Table 2D Constitution of metal coordination groups.
(i) Composition of metal coordination groups in 30% cull set with duplicate chains excluded*.

Numbers with total metal coordination number, N , in coordination groups with two or more protein dono								
N	2	3	4	5	6	7	≥ 8	all N
Ca	2	6	13	36	110	22	1	190
Mg	3	8	7	16	46	1	-	81
Mn	-	-	3	13	18	3	-	37
Fe	-	-	12	10	15	-	-	37
Cu	-	9	17	11	-	-	-	37
Zn	7	19	89	31	3	-	-	149
Na	2	5	6	14	13	2	-	42
K	-	2	5	5	6	8	2	28

Num	ith								
N	0**	1	2	3	4	5	6	7	all N
Ca	11	27	29	26	45	61	27	2	228
Mg	54	71	41	31	6	3	-	-	206
Mn	5	6	11	14	11	1	-	-	48
Fe	1	24	7	8	15	5	2	-	62
Cu	-	1	1	21	14	1	-	-	38
Zn	2	33	21	51	76	-	-	-	184
Na	4	28	10	15	9	6	-	1	74
K	4	-	8	3	7	7	2	1	32

Num	,							
N	0	1	2	3	4	5	6	all N
Ca	51	60	39	26	8	5	1	190
Mg	10	12	9	25	24	1	-	81
Mn	1	3	15	13	4	1	-	37
Fe	12	10	6	5	4	-	-	37
Cu	17	17	3	-	-	-	-	37
Zn	71	59	18	1	-	-	-	149
Na	12	10	9	8	3	-	-	42
K	5	5	11	5	-	2	-	28

* Allowance has not been made here for the cases where a metal is coordinated by donor groups or solvent molecules which are in neighbouring asymmetric units in the crystal, related by symmetry to those in the PDB file. The numbers are small.
** These could be related to duplicate chains, there is no criterion on which to exclude them; the large numbers for Mg relate to protein/DNA complexes, and/or phosphate complexes.
(ii) Distribution of chelate loop sizes.

seqdif	0	1	2	3	4	5	$6-$	$11-$	$20-$	$30-$	$50-$	$100-$	$200-$	all
							10	19	29	49	99	199	499	
Ca	31	56	237	68	14	38	16	29	28	48	22	16	3	606
Zn	9	9	37	69	29	13	26	38	30	31	40	18	5	354
$\mathrm{Mg}, \mathrm{Fe}, \mathrm{Cu}$	2	30	56	35	25	24	12	24	34	47	54	34	16	
Na, K	16	19	37	30	0	5	2	4	15	12	11	7	3	

(iii) Most commonly occurring chelate loops for each metal. Lists of all chelate loops for each metal are in Table 2W (at http://tanna.bch.ed.ac.uk/arch/).

metal	total number coordination groups	number of donor pairs	commonest and	chelate loops (number)			
Ca	190	606	DD 2 (35)	DO 1 (19)	OE 5 (27)	OD 0 (12)	
			DN 2 (16)	DO 2 (38)	OO 2 (38)	OD 2 (32)	[ON 2 (6)]
				NO 2 (15)	OO 3 (20)	OD 3 (12)	[ON 3 (6)]
Mg	81	133	DD 2 (7)	OO 3 (14)			
Mn	37	76	DD 2 (4)	DO 1 (3)			
Fe	37	96	EH 3 (7)	HH 5 (4)	CC 3 (5)	(non-haem,	non Fe/S)
Cu	37	88	HH 2 (6)	HM 5 (5)	CH 4 (4)	CH 5 (6)	CC 4 (5)
Zn	149	354	HH 2 (11)	HH 4 (16)	CC 2 (9)	CC 3 (53)	CC 5 (9)
Na	42	93	OO 1 (4)	OO 2 (12)	OO 3 (16)		
K	28	78	OO 1 (8)	OO 2 (5)	OO 3 (5)	OD 2 (3)	OT 0 (4)

Table 4 D (i) Conformations of most commonly occurring Ca chelate loops. The conformations are defined by letters as in Fig 2(b), The range of conformations within a group is indicated by the (sample) standard deviation, s.d., of the torsion angles ϕ, ψ within the group. The local conformation is that from relseq $=-10$, to 10 amino-acids beyond the end of the chelate loop. (Small discrepancies between the numbers of chelate loops found here and in Table 2 f) are due to the different ways of dealing with duplicate chains in the asymmetric unit.)

Ca	No.	conformation and number in each	s.d. of $\phi, \psi\left({ }^{\circ}\right)$	fold families	local confns. same?	example (and resolution/Å)	Comments
DO 2	38	25 kgb	10-17	various	various	2 pvb at 94A (0.9)	
$\begin{aligned} & 13- \\ & \text { ring } \end{aligned}$		13 bkb or bab	19-38	various	various	1 nls at 10 (0.94)	
NO 2	13	8 kgb	10-14	more than one	various	1 bfd at 455 (1.6)	like Ca DO 2
$\begin{aligned} & 13- \\ & \text { ring } \end{aligned}$		5 xkb	8-14	more than one	various	1 gci at 79 (0.78)	like Ca DO 2
DD 2	28	15 dak	10-21	mostly same	mostly same	2pvb at 51A (0.91)	1st dpair** in 2225
14- ring		8 kgk	9-11	mostly same	most same	$2 p v b$ at 92A (0.91)	clear subsets
		3 bkb or bdb 2 misc	2-5	all same	all same		

DN 2	15	9 dak or bak	7-17	various	most same	1 gca at 134 (1.7)	like Ca DD 2
14-		5 kgk	8-12	all same	all same	1 g 4 y at 58R (1.6)	like Ca DD 2
ring							
		1 bbb					

002	40	16 kb	9-23	various	various	$\begin{aligned} & 1 i 76 \text { at } 169 \mathrm{~A} \\ & (1.20) \end{aligned}$	clear subsets, see ****
10ring		11 bj	8-22	various	various	$\begin{aligned} & 1 i 76 \text { at } 155 \mathrm{~A} \\ & (1.20) \end{aligned}$	clear subsets, see ****
		9 jb	7-27	some same	some	1 gci at 79 (0.78)	clear subsets
					same		
		3 m					

$O D O$	12	5 b	(ψ) 9	mostly same	various	$2 m s b$ at 206A (1.7)	
7-ring		7 a	(ψ) 9	various	various	$\begin{aligned} & 1 \mathrm{pa} 2 \text { at } 43 \mathrm{~A} \\ & (1.45) \end{aligned}$	
OS/T	13	4 k	(ψ) 5	various	various	1pa2 at 170A	
0						(1.45)	
6-ring		9 b or d	(\%) 30	various	various	$\begin{aligned} & 1 \mathrm{~d} 2 \mathrm{v} \text { at } 168 \mathrm{C} \\ & (1.75) \end{aligned}$	range of conformations
003	21	6 kkb	4-12	various	some same	2btc at 72E (1.50)	\} three are fairly close i.e.
13-		4 akb	5-11	various	various	1slu at 72B (1.8)	\} subsets of one confn
ring							
		4 aab	9-26	various	some same	$\begin{aligned} & 1 \mathrm{~g} 5 \mathrm{c} \text { at } 118 \mathrm{~F} \\ & (2.10) \end{aligned}$	\} with s.d. $11-30^{\circ}$
		7 misc					
OD 2	32	27 bb, ba, bd	16-31	various	various	see Table 4 W	clear subsets, s.d. 4-10 ${ }^{\circ}$
		5 misc					
ring							
OE 2	8	7 ba or bd	4-17		various	2pvb at 57A (0.9 A)	like Ca OD 2 counterparts
ring		1 misc					
DO 1	19	17 bb	19-35		various	2sus at 40 (1.50 A)	clear subsets s.d. 4-13 ${ }^{\circ}$
10-		2 misc					
ring							
	al one	re first chela are second ap at 253P		225 coordinati a 2225 coor ation, and at 3		hand) (EF hand) ormation(1.64A reso	tion)

(Table 4 D continued)
(ii) Distribution of conformations of most commonly occurring Zn chelate loops - details as in Table 6(a)

Zn	No	conformatio n	s.d. of $\phi, \psi\left({ }^{\circ}\right)$	fold families	local confns.	example (and resolution/Å)	comments
		and			same ?		
		number					
		in each					

| CC 2 | 9 | 6 bkd | $15-22$ | $?$ | no |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 1 \mathrm{~h} 7 \mathrm{n}$ at $133 \mathrm{~A}(1.6)$

CC 3 $14-$	50**	47 baak or baaa	9-26	various	no	1 vfy at 176A (1.15) 1 vfy at 222A (1.15)) two clear subsets,) s.d. $<11^{\circ}$, rest between
ring							
		3 agab	4-21			1 het at 97A (1.15)	
CC 5	10	5 bkbakb	4-18	?	no	1ali at 107A (1.6)	
17-		2 kgbaad					
ring							

(Table 4 D continued)
(iii) Examples of conformations in other less common chelate loops for Zn and Ca

	X or XX	number	conformation	
Zn XX 3	CH, HC, HD, HE	7	baaa	like Zn CC 3

Fig. 5D One protein chain may provide the donors for more than one metal coordination group; sometimes the two metal atoms are close, as a result of the sharing of donor groups. These schemes a)-f) illustrate the interactions found when Zn ... Zn approaches between 3 and $6 \AA$ were investigated, and $\mathrm{Ca} . . \mathrm{Ca}$ between 3 and $7.5 \AA$.
a) is found in $1 \mathrm{zme}, 1 \mathrm{hwt}, \mathrm{Zn} . . \mathrm{Zn}$ distance $\sim 3.0 \AA$.
b) is found in 1lam, 1ush with distances $3.0,3.3 \AA$
c) is found in 1cg2, 1bf6, 1aol, 1ah7, 1ak0 with distances $3.3-3.7 \AA$.
d) is found in 1qtw, 1qh5, 1amp with distances 3.4-3.5 \AA.
e) is found in $1 \mathrm{rmd}, 4 \mathrm{mt} 2$ with distance $3.9 \AA$.
f) is found in1hzy, 1j79, 1qq9, 1ew2 with distances 3.4 - $4.0 \AA$.

In 1sml there are two water molecules shared, giving a Zn ... Zn distance $3.5 \AA$.
In five cases with Zn ... Zn in the range 4-6 \AA there was no obvious shared group, and in 1 bOn an imidazole appears to be shared, giving $\mathrm{Zn} . . \mathrm{Zn} 5.8$ Å.
There are fewer examples of close Ca...Ca approaches, and they all involve the sharing of carboxylate groups as in b), c) or d).
When two or three carboxylate groups are shared, Ca...Ca distances are 3.9-4.5 Å: 1acc, 1e43 (2), 1q0h, $1 \mathrm{nls}, 1 \mathrm{sac}, 2 \mathrm{msb}$.
When only one carboxylate group is shared the distances are longer: 4.7-5.2 A in 1 kap (4 examples), 6.6 \AA in 1ava.

cys
a)

c)
d)

non-protein
small molecule

f)

Fig. 5D

