Fast and high-fidelity entangling gate through parametrically modulated longitudinal coupling

Baptiste Royer1, Arne L. Grimsmo1, Nicolas Didier2,3, and Alexandre Blais1,4

1Institut quantique and D'epartment de Physique, Universit'e de Sherbrooke, 2500 boulevard de l'Universit'e, Sherbrooke, Qu'ebec J1K 2R1, Canada
2Current address: Rigetti Quantum Computing, 775 Heinz Avenue, Berkeley, California 94710, USA.
3QUANTIC team, Inria Paris, 2 rue Simone Iff, 75012 Paris, France
4Canadian Institute for Advanced Research, Toronto, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We investigate an approach to universal quantum computation based on the modulation of longitudinal qubit-oscillator coupling. We show how to realize a controlled-phase gate by simultaneously modulating the longitudinal coupling of two qubits to a common oscillator mode. In contrast to the more familiar transversal qubit-oscillator coupling, the magnitude of the effective qubit-qubit interaction does not rely on a small perturbative parameter. As a result, this effective interaction strength can be made large, leading to short gate times and high gate fidelities. We moreover show how the gate infidelity can be exponentially suppressed with squeezing and how the entangling gate can be generalized to qubits coupled to separate oscillators. Our proposal can be realized in multiple physical platforms for quantum computing, including superconducting and spin qubits.

► BibTeX data

► References

[1] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006).
https:/​/​books.google.ca/​books/​about/​Exploring_the_Quantum.html?id=ynwSDAAAQBAJ&redir_esc=y

[2] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.69.062320

[3] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).
https:/​/​doi.org/​10.1103/​PhysRevLett.83.4204

[4] A. A. Houck, J. A. Schreier, B. R. Johnson, J. M. Chow, J. Koch, J. M. Gambetta, D. I. Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 101, 080502 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.080502

[5] M. Boissonneault, J. M. Gambetta, and A. Blais, Phys. Rev. A 79, 013819 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.79.013819

[6] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. A 75, 032329 (2007).
http:/​/​link.aps.org/​abstract/​PRA/​v75/​e032329

[7] J. M. Chow, J. M. Gambetta, A. W. Cross, S. T. Merkel, C. Rigetti, and M. Steffen, New Journal of Physics 15, 115012 (2013).
http:/​/​stacks.iop.org/​1367-2630/​15/​i=11/​a=115012

[8] H. Paik, A. Mezzacapo, M. Sandberg, D. T. McClure, B. Abdo, A. D. Córcoles, O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta, and J. M. Chow, Phys. Rev. Lett. 117, 250502 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.250502

[9] A. J. Kerman and W. D. Oliver, Phys. Rev. Lett. 101, 070501 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.070501

[10] A. J. Kerman, New Journal of Physics 15, 123011 (2013).
http:/​/​stacks.iop.org/​1367-2630/​15/​i=12/​a=123011

[11] P.-M. Billangeon, J. S. Tsai, and Y. Nakamura, Phys. Rev. B 91, 094517 (2015a).
https:/​/​doi.org/​10.1103/​PhysRevB.91.094517

[12] P.-M. Billangeon, J. S. Tsai, and Y. Nakamura, Phys. Rev. B 92, 020509 (2015b).
https:/​/​doi.org/​10.1103/​PhysRevB.92.020509

[13] N. Didier, J. Bourassa, and A. Blais, Phys. Rev. Lett. 115, 203601 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.203601

[14] S. Richer and D. DiVincenzo, Phys. Rev. B 93, 134501 (2016).
https:/​/​doi.org/​10.1103/​PhysRevB.93.134501

[15] T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf, Npj Quantum Information 2, 16002 EP (2016).
https:/​/​doi.org/​10.1038/​npjqi.2016.2

[16] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge University Press, 2000).
https:/​/​books.google.ca/​books?id=65FqEKQOfP8C

[17] A. W. Cross and J. M. Gambetta, Phys. Rev. A 91, 032325 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.032325

[18] S. Puri and A. Blais, Phys. Rev. Lett. 116, 180501 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.180501

[19] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics (Springer, 2004).
https:/​/​books.google.ca/​books?id=a_xsT8oGhdgC

[20] M. A. Nielsen, Physics Letters A 303, 249 (2002).
https:/​/​doi.org/​10.1016/​S0375-9601(02)01272-0

[21] F. Beaudoin, D. Lachance-Quirion, W. A. Coish, and M. Pioro-Ladrière, Nanotechnology 27, 464003 (2016).
http:/​/​stacks.iop.org/​0957-4484/​27/​i=46/​a=464003

[22] P.-Q. Jin, M. Marthaler, A. Shnirman, and G. Schön, Phys. Rev. Lett. 108, 190506 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.108.190506

[23] A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden, N. K. Langford, and L. DiCarlo, Applied Physics Letters 106, 182601 (2015).
https:/​/​doi.org/​10.1063/​1.4919761

[24] A. D. Corcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M. Steffen, J. M. Gambetta, and J. M. Chow, Nat Commun 6 (2015).
https:/​/​doi.org/​10.1038/​ncomms7979

[25] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, Science 350, 307 (2015).
https:/​/​doi.org/​10.1126/​science.aaa8525

[26] T. White, J. Mutus, I.-C. Hoi, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, et al., Applied Physics Letters 106, 242601 (2015).
https:/​/​doi.org/​10.1063/​1.4922348

[27] M. D. Reed, B. R. Johnson, A. A. Houck, L. DiCarlo, J. M. Chow, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Applied Physics Letters 96, 203110 (2010).
https:/​/​doi.org/​10.1063/​1.3435463

[28] N. T. Bronn, Y. Liu, J. B. Hertzberg, A. D. Córcoles, A. A. Houck, J. M. Gambetta, and J. M. Chow, Applied Physics Letters 107 (2015).
https:/​/​doi.org/​10.1063/​1.4934867

[29] H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (OUP Oxford, 2007).
https:/​/​books.google.ca/​books?id=DkcJPwAACAAJ

Cited by

[1] Samuel J. Elman, Stephen D. Bartlett, and Andrew C. Doherty, "Long-range entanglement for spin qubits via quantum Hall edge modes", Physical Review B 96 11, 115407 (2017).

[2] Udson C. Mendes, Sébastien Jezouin, Philippe Joyez, Bertrand Reulet, Alexandre Blais, Fabien Portier, Christophe Mora, and Carles Altimiras, "Parametric amplification and squeezing with an ac- and dc-voltage biased superconducting junction", Physical Review Applied 11 3, 034035 (2019).

[3] Hiraku Toida, Takuya Ohrai, Yuichiro Matsuzaki, Kosuke Kakuyanagi, and Shiro Saito, "Control of the transition frequency of a superconducting flux qubit by longitudinal coupling to the photon number degree of freedom in a resonator", Physical Review B 102 9, 094502 (2020).

[4] Yinqi Chen, Konstantin N. Nesterov, Hugh Churchill, Javad Shabani, Vladimir E. Manucharyan, and Maxim G. Vavilov, "Voltage-activated parametric entangling gates based on gatemon qubits", Physical Review Applied 20 4, 044012 (2023).

[5] Maximilian Russ and Guido Burkard, "Three-electron spin qubits", Journal of Physics: Condensed Matter 29 39, 393001 (2017).

[6] Nicolas Didier, Eyob A. Sete, Marcus P. da Silva, and Chad Rigetti, "Analytical modeling of parametrically modulated transmon qubits", Physical Review A 97 2, 022330 (2018).

[7] C. Eichler and J. R. Petta, "Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators", Physical Review Letters 120 22, 227702 (2018).

[8] S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A. Grimm, L. Frunzio, S. Shankar, and M. H. Devoret, "Gated Conditional Displacement Readout of Superconducting Qubits", Physical Review Letters 122 8, 080502 (2019).

[9] M. J. A. Schuetz, B. Vermersch, G. Kirchmair, L. M. K. Vandersypen, J. I. Cirac, M. D. Lukin, and P. Zoller, "Quantum simulation and optimization in hot quantum networks", Physical Review B 99 24, 241302 (2019).

[10] J. Goetz, F. Deppe, K. G. Fedorov, P. Eder, M. Fischer, S. Pogorzalek, E. Xie, A. Marx, and R. Gross, "Parity-Engineered Light-Matter Interaction", Physical Review Letters 121 6, 060503 (2018).

[11] M. AbuGhanem, "Two-qubit Entangling Gate for Superconducting Quantum Computers", SSRN Electronic Journal (2021).

[12] Xin Wang, Adam Miranowicz, Hong-Rong Li, Fu-Li Li, and Franco Nori, "Two-color electromagnetically induced transparency via modulated coupling between a mechanical resonator and a qubit", Physical Review A 98 2, 023821 (2018).

[13] J. Corrigan, Benjamin Harpt, Nathan Holman, Rusko Ruskov, Piotr Marciniec, D. Rosenberg, D. Yost, R. Das, William D. Oliver, R. McDermott, Charles Tahan, Mark Friesen, and M.A. Eriksson, "Longitudinal coupling between a Si/Si1−xGex double quantum dot and an off-chip TiN resonator", Physical Review Applied 20 6, 064005 (2023).

[14] Stefano Bosco, Pasquale Scarlino, Jelena Klinovaja, and Daniel Loss, "Fully Tunable Longitudinal Spin-Photon Interactions in Si and Ge Quantum Dots", Physical Review Letters 129 6, 066801 (2022).

[15] T.-Q. Cai, J.-H. Wang, Z.-L. Wang, X.-Y. Han, Y.-K. Wu, Y.-P. Song, and L.-M. Duan, "All-microwave nonadiabatic multiqubit geometric phase gate for superconducting qubits", Physical Review Research 3 4, 043071 (2021).

[16] F. M. Souza, P. A. Oliveira, and L. Sanz, "Quantum entanglement driven by electron-vibrational mode coupling", Physical Review A 100 4, 042309 (2019).

[17] V. P. Michal, J. C. Abadillo-Uriel, S. Zihlmann, R. Maurand, Y.-M. Niquet, and M. Filippone, "Tunable hole spin-photon interaction based on g -matrix modulation", Physical Review B 107 4, L041303 (2023).

[18] Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu-xi Liu, and Franco Nori, "Microwave photonics with superconducting quantum circuits", Physics Reports 718-719, 1 (2017).

[19] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff, "Circuit quantum electrodynamics", Reviews of Modern Physics 93 2, 025005 (2021).

[20] C. G. L. Bøttcher, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, and A. Yacoby, "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit", Nature Communications 13 1, 4773 (2022).

[21] Neill Lambert, Mauro Cirio, Matthieu Delbecq, Giles Allison, Marian Marx, Seigo Tarucha, and Franco Nori, "Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED", Physical Review B 97 12, 125429 (2018).

[22] S. A. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, P. Karalekas, R. Manenti, M. P. da Silva, R. Sinclair, E. Acala, N. Alidoust, J. Angeles, A. Bestwick, M. Block, B. Bloom, A. Bradley, C. Bui, L. Capelluto, R. Chilcott, J. Cordova, G. Crossman, M. Curtis, S. Deshpande, T. El Bouayadi, D. Girshovich, S. Hong, K. Kuang, M. Lenihan, T. Manning, A. Marchenkov, J. Marshall, R. Maydra, Y. Mohan, W. O’Brien, C. Osborn, J. Otterbach, A. Papageorge, J.-P. Paquette, M. Pelstring, A. Polloreno, G. Prawiroatmodjo, V. Rawat, M. Reagor, R. Renzas, N. Rubin, D. Russell, M. Rust, D. Scarabelli, M. Scheer, M. Selvanayagam, R. Smith, A. Staley, M. Suska, N. Tezak, D. C. Thompson, T.-W. To, M. Vahidpour, N. Vodrahalli, T. Whyland, K. Yadav, W. Zeng, and C. Rigetti, "Parametrically Activated Entangling Gates Using Transmon Qubits", Physical Review Applied 10 3, 034050 (2018).

[23] Arne L. Grimsmo and Alexandre Blais, "Squeezing and quantum state engineering with Josephson travelling wave amplifiers", npj Quantum Information 3 1, 20 (2017).

[24] George S. Barron, F. A. Calderon-Vargas, Junling Long, David P. Pappas, and Sophia E. Economou, "Microwave-based arbitrary cphase gates for transmon qubits", Physical Review B 101 5, 054508 (2020).

[25] Arne L. Grimsmo and Thomas B. Smith, "Majorana qubit readout using longitudinal qubit-resonator interaction", Physical Review B 99 23, 235420 (2019).

[26] Iñigo Arrazola and Jorge Casanova, "Robust oscillator-mediated phase gates driven by low-intensity pulses", Communications Physics 6 1, 123 (2023).

[27] Alec Dinerstein, Caroline S Gorham, and Eugene F Dumitrescu, "The hybrid topological longitudinal transmon qubit", Materials for Quantum Technology 1 2, 021001 (2021).

[28] S. V. Remizov, A. A. Zhukov, D. S. Shapiro, W. V. Pogosov, and Yu. E. Lozovik, "Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit–Cavity System", Journal of Low Temperature Physics 191 5-6, 365 (2018).

[29] Rusko Ruskov and Charles Tahan, "Modulated longitudinal gates on encoded spin qubits via curvature couplings to a superconducting cavity", Physical Review B 103 3, 035301 (2021).

[30] Susanne Richer, Nataliya Maleeva, Sebastian T. Skacel, Ioan M. Pop, and David DiVincenzo, "Inductively shunted transmon qubit with tunable transverse and longitudinal coupling", Physical Review B 96 17, 174520 (2017).

[31] Muhammad AbuGhanem and Hichem Eleuch, "Two-qubit entangling gates for superconducting quantum computers", Results in Physics 56, 107236 (2024).

[32] T. Bækkegaard, L. B. Kristensen, N. J. S. Loft, C. K. Andersen, D. Petrosyan, and N. T. Zinner, "Realization of efficient quantum gates with a superconducting qubit-qutrit circuit", Scientific Reports 9 1, 13389 (2019).

[33] Mauro Cirio, Kamanasish Debnath, Neill Lambert, and Franco Nori, "Amplified Optomechanical Transduction of Virtual Radiation Pressure", Physical Review Letters 119 5, 053601 (2017).

[34] Dat Thanh Le, Arne Grimsmo, Clemens Müller, and T. M. Stace, "Doubly nonlinear superconducting qubit", Physical Review A 100 6, 062321 (2019).

[35] Yongcheng He, Jianshe Liu, Changhao Zhao, Rutian Huang, Genting Dai, and Wei Chen, "Control System of Superconducting Quantum Computers", Journal of Superconductivity and Novel Magnetism 35 1, 11 (2022).

[36] Sarath Prem, Pei-Xin Shen, Marcin M. Wysokiński, and Mircea Trif, "Longitudinal coupling between electrically driven spin qubits and a resonator", Physical Review B 109 15, 155304 (2024).

[37] Jonas Mielke and Guido Burkard, "Dispersive cavity-mediated quantum gate between driven dot-donor nuclear spins", Physical Review B 107 15, 155302 (2023).

[38] S. P. Harvey, C. G. L. Bøttcher, L. A. Orona, S. D. Bartlett, A. C. Doherty, and A. Yacoby, "Coupling two spin qubits with a high-impedance resonator", Physical Review B 97 23, 235409 (2018).

[39] L. C. G. Govia, A. Lingenfelter, and A. A. Clerk, "Stabilizing two-qubit entanglement by mimicking a squeezed environment", Physical Review Research 4 2, 023010 (2022).

[40] Félix Beaudoin, Dany Lachance-Quirion, W. A. Coish, and Michel Pioro-Ladrière, "Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings", Nanotechnology 27 46, 464003 (2016).

[41] Maximilian Russ, Florian Ginzel, and Guido Burkard, "Coupling of three-spin qubits to their electric environment", Physical Review B 94 16, 165411 (2016).

[42] Tanay Roy, Suman Kundu, Madhavi Chand, Sumeru Hazra, N. Nehra, R. Cosmic, A. Ranadive, Meghan P. Patankar, Kedar Damle, and R. Vijay, "Implementation of Pairwise Longitudinal Coupling in a Three-Qubit Superconducting Circuit", Physical Review Applied 7 5, 054025 (2017).

[43] M. J. A. Schuetz, G. Giedke, L. M. K. Vandersypen, and J. I. Cirac, "High-fidelity hot gates for generic spin-resonator systems", Physical Review A 95 5, 052335 (2017).

[44] Félix Beaudoin, Alexandre Blais, and W. A. Coish, "Hamiltonian engineering for robust quantum state transfer and qubit readout in cavity QED", New Journal of Physics 19 2, 023041 (2017).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-03 19:26:51) and SAO/NASA ADS (last updated successfully 2024-05-03 19:26:52). The list may be incomplete as not all publishers provide suitable and complete citation data.