Skip to main content
Log in

Electronic properties of transition-metal dichalcogenides

  • 2D layered transition-metal dichalcogenides
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Graphene is not the only prominent example of two-dimensional (2D) materials. Due to their interesting combination of high mechanical strength and optical transparency, direct bandgap and atomic scale thickness transition-metal dichalcogenides (TMDCs) are an example of other materials that are now vying for the attention of the materials research community. In this article, the current state of quantum-theoretical calculations of the electronic and mechanical properties of semiconducting TMDC materials are presented. In particular, the intriguing interplay between external parameters (electric field, strain) and band structure, as well as the basic properties of heterostructures formed by vertical stacking of different 2D TMDCs are reviewed. Electrical measurements of MoS2, WS2, and WSe2 and their heterostructures, starting from simple field-effect transistors to more demanding logic circuits, high-frequency transistors, and memory devices, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A. Kuc, T. Heine, Chem. Soc. Rev. (2014), doi, 10.1039/C4CS00276H.

  2. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).

    Google Scholar 

  4. K.S. Novoselov, Rev. Mod. Phys. 83, 837 (2011).

    Google Scholar 

  5. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009).

    Google Scholar 

  6. F. Xia, D.B. Farmer, Y. Lin, P. Avouris, Nano Lett. 10, 715 (2010).

    Google Scholar 

  7. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Google Scholar 

  8. F. Wypych, R. Schollhorn, J. Chem. Soc. Chem. Commun. 19, 1386 (1992).

    Google Scholar 

  9. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).

    Google Scholar 

  10. M.M. Benameur, B. Radisavljevic, J.S. Heron, S. Sahoo, H. Berger, A. Kis, Nanotechnology 22, 125706 (2011).

    Google Scholar 

  11. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011).

    Google Scholar 

  12. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Nat. Mater. 12, 754 (2013).

    Google Scholar 

  13. A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.-H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Nat. Mater. 12, 554 (2013).

    Google Scholar 

  14. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947 (2012).

    Google Scholar 

  15. J.A. Wilson, A.D. Yoffe, Adv. Phys. 18, 193 (1969).

    Google Scholar 

  16. R.F. Frindt, A.D. Yoffe, Proc. R. Soc. Lond. A 273, 69 (1963).

    Google Scholar 

  17. P. Joensen, R.F. Frindt, S.R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Google Scholar 

  18. K.K. Kam, B.A. Parkinson, J. Phys. Chem. 86, 463 (1982).

    Google Scholar 

  19. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010).

    Google Scholar 

  20. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  21. A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B Condens. Matter 83, 245213 (2011).

    Google Scholar 

  22. T. Li, G. Galli, J. Phys. Chem. C 111, 16192 (2007).

    Google Scholar 

  23. L. Liu, S.B. Kumar, Y. Ouyang, J. Guo, IEEE Trans. Electron Devices 58, 3042 (2011).

    Google Scholar 

  24. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, Physica B 406, 2254 (2011).

    Google Scholar 

  25. C. Ataca, H. Ş ahin, S. Ciraci, J. Phys. Chem. C 116, 8983 (2012).

    Google Scholar 

  26. Acc. Chem. Res. 48, 1 (2015).

  27. N.E. Staley, J. Wu, P. Eklund, Y. Liu, L. Li, Z. Xu, Phys. Rev. B Condens. Matter 80, 184505 (2009).

    Google Scholar 

  28. M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Nature 514, 205 (2014).

    Google Scholar 

  29. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Nano Lett. 12, 5576 (2012).

    Google Scholar 

  30. W.S. Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S.D. Chae, P. Zhao, A. Konar, H. Xing, A. Seabaugh, D. Jena, Appl. Phys. Lett. 101, 013107 (2012).

    Google Scholar 

  31. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, Nano Lett. 12, 3788 (2012).

    Google Scholar 

  32. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, K. Banerjee, Nano Lett. 13, 1983 (2013).

    Google Scholar 

  33. P. Miró, M. Audiffred, T. Heine, Chem. Soc. Rev. 43, 6537 (2014).

    Google Scholar 

  34. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D.F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, J. Wu., Nat. Commun. 5, 3252 (2014).

    Google Scholar 

  35. S. Yang, S. Tongay, Q. Yue, Y. Li, B. Li, F. Lu, Sci. Rep. 4, 5442 (2014).

    Google Scholar 

  36. T. Heine, Acc. Chem. Res. 48, 65 (2015).

    Google Scholar 

  37. P. Miro, M. Audiffred, T. Heine, Chem. Soc. Rev. 43, 6537 (2014).

    Google Scholar 

  38. P. Miro, M. Ghorbani-Asl, T. Heine, Angew. Chem. Int. Ed. 53, 3015 (2014).

    Google Scholar 

  39. Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Phys. Rev. B Condens. Matter 84, 153402 (2011).

    Google Scholar 

  40. N. Zibouche, A. Kuc, J. Musfeldt, T. Heine, Ann. Phys. 526, 395 (2014).

    Google Scholar 

  41. N. Zibouche, P. Philipsen, A. Kuc, T. Heine, Phys. Rev. B Condens. Matter 90, 125440 (2014).

    Google Scholar 

  42. N. Zibouche, P. Philipsen, T. Heine, A. Kuc, Phys. Chem. Chem. Phys. 16, 11251 (2014).

    Google Scholar 

  43. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, Proc. Natl. Acad. Sci. U.S.A. 103, 523 (2006).

    Google Scholar 

  44. M. Ghorbani-Asl, S. Borini, A. Kuc, T. Heine, Phys. Rev. B Condens. Matter 87, 235434 (2013).

    Google Scholar 

  45. M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A.F. Oliveira, A. Kuc, T. Heine, Sci. Rep. 3, 2961, (2013).

    Google Scholar 

  46. T. Lorenz, M. Ghorbani-Asl, J.-O. Joswig, T. Heine, G. Seifert, Nanotechnology 25, 445201 (2014).

    Google Scholar 

  47. G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. van der Zant, G. Steele, A. Kuc, T. Heine, C. Schüller, T. Korn, 2D Mater. (2015) (forthcoming).

  48. K. He, C. Poole, K.F. Mak, J. Shan, Nano Lett. 13, 2931 (2013).

    Google Scholar 

  49. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Nano Lett. 13, 3626 (2013).

    Google Scholar 

  50. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J.C. Grossman, J. Wu, Sci. Rep. 3, 2657, (2013).

    Google Scholar 

  51. M. Ghorbani-Asl, A.N. Enyashin, A. Kuc, G. Seifert, T. Heine, Phys. Rev. B Condens. Matter 88, 245440 (2013).

    Google Scholar 

  52. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, X. Wang, Nat. Commun. 4, 2642, (2013).

    Google Scholar 

  53. J. Brivio, D.T.L. Alexander, A. Kis, Nano Lett. 11, 5148 (2011).

    Google Scholar 

  54. P. Miro, M. Ghorbani-Asl, T. Heine, Adv. Mater. 25, 5473 (2013).

    Google Scholar 

  55. International Technology Roadmap for Semiconductors (2011), http://www.itrs.net/.

  56. B. Radisavljevic, A. Kis, Nat. Mater. 12, 815 (2013).

    Google Scholar 

  57. K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B Condens. Matter 85, 115317 (2012).

    Google Scholar 

  58. K. Kaasbjerg, K.S. Thygesen, A.-P. Jauho, Phys. Rev. B Condens. Matter 87, 235312 (2013).

    Google Scholar 

  59. Z.-Y. Ong, M.V. Fischetti, Phys. Rev. B Condens. Matter 88, 165316 (2013).

    Google Scholar 

  60. D. Jariwala, V.K. Sangwan, D.J. Late, J.E. Johns, V.P. Dravid, T.J. Marks, L.J. Lauhon, M.C. Hersam, Appl. Phys. Lett. 102, 173107 (2013).

    Google Scholar 

  61. B. Baugher, H.O.H. Churchill, Y. Yang, P. Jarillo-Herrero, Nano Lett. 13, 4212 (2013).

    Google Scholar 

  62. X. Xie, D. Sarkar, W. Liu, J. Kang, O. Marinov, M.J. Deen, K. Banerjee, ACS Nano 8, 5633 (2014).

    Google Scholar 

  63. W. Zhu, T. Low, Y.-H. Lee, H. Wang, D.B. Farmer, J. Kong, F. Xia, P. Avouris, Nat. Commun. 5, 3087 (2014).

    Google Scholar 

  64. D. Krasnozhon, D. Lembke, C. Nyffeler, Y. Leblebici, A. Kis, Nano Lett. 14, 5905 (2014).

    Google Scholar 

  65. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8, 497 (2013).

    Google Scholar 

  66. A.T. Neal, H. Liu, J.J. Gu, P.D. Ye, Proc. 2012 70th Ann. Dev. Res. Conf. (DRC) (2012), p. 65

  67. I. Popov, G. Seifert, D. Tománek, Phys. Rev. Lett. 108, 156802 (2012).

    Google Scholar 

  68. S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2013).

    Google Scholar 

  69. J. Kang, W. Liu, D. Sarkar, D. Jena, K. Banerjee, Phys. Rev. X 4, 031005 (2014).

    Google Scholar 

  70. J. Kang, W. Liu, K. Banerjee, Appl. Phys. Lett. 104, 233502 (2014).

    Google Scholar 

  71. D. Kiriya, M. Tosun, P. Zhao, J.S. Kang, A. Javey, J. Am. Chem. Soc. 136, 7853 (2014).

    Google Scholar 

  72. L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P.Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, P.D. Ye, Nano Lett. (2014), available at http://arxiv.org/pdf/1410.8201.

  73. R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Nat. Mater. 13, 1128 (2014).

    Google Scholar 

  74. J.T. Ye, Y.J. Zhang, R. Akashi, M.S. Bahramy, R. Arita, Y. Iwasa, Science 338, 1193 (2012).

    Google Scholar 

  75. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74 (2012).

    Google Scholar 

  76. H.S. Lee, S.-W. Min, Y.-G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, Nano Lett. 12, 3695 (2012).

    Google Scholar 

  77. A. Allain, A. Kis, ACS Nano 8, 7180 (2014).

    Google Scholar 

  78. S. Jo, N. Ubrig, H. Berger, A.B. Kuzmenko, A.F. Morpurgo, Nano Lett. 14, 2019 (2014).

    Google Scholar 

  79. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Nat. Nanotechnol. 8, 100 (2013).

    Google Scholar 

  80. S. Bertolazzi, D. Krasnozhon, A. Kis, ACS Nano 7, 3246 (2013).

    Google Scholar 

  81. T. Roy, M. Tosun, J.S. Kang, A.B. Sachid, S.B. Desai, M. Hettick, C.C. Hu, A. Javey, ACS Nano 8, 6259 (2014).

    Google Scholar 

  82. B. Radisavljevic, M.B. Whitwick, A. Kis, ACS Nano 5, 9934 (2011).

    Google Scholar 

  83. B. Radisavljevic, M.B. Whitwick, A. Kis, Appl. Phys. Lett. 101, 043103 (2012).

    Google Scholar 

  84. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, T. Palacios, Nano Lett. 12, 4674 (2012).

    Google Scholar 

  85. M. Tosun, S. Chuang, H. Fang, A.B. Sachid, M. Hettick, Y. Lin, Y. Zeng, A. Javey, ACS Nano 8, 4948 (2014).

    Google Scholar 

  86. S. Bertolazzi, J. Brivio, A. Kis, ACS Nano 5, 9703 (2011).

    Google Scholar 

  87. A. Griffith, Philos. Trans. R. Soc Lond. A 221, 163 (1920).

    Google Scholar 

  88. A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H.S.J. van der Zant, G.A. Steele, W.J. Venstra, Adv. Mater. 25, 6719 (2013).

    Google Scholar 

  89. J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Nano Lett. 12, 4013 (2012).

    Google Scholar 

  90. H.-Y. Chang, S. Yang, J. Lee, L. Tao, W.-S. Hwang, D. Jena, N. Lu, D. Akinwande, ACS Nano 7, 5446 (2013).

    Google Scholar 

  91. G.-H. Lee Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, D.-Y. Lee, C. Lee, W.J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, J. Hone, ACS Nano 7, 7931 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Research Council (grants no. 240076 & no. 256962), Marie Curie ITN network “MoWSeS” (grant no. 317451), the Swiss National Science Foundation (grants no. 132102 and 138237), Swiss SNF Sinergia Grant no. 147607, and Deutsche Forschungsgemeinschaft (HE 3543/19–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Kuc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuc, A., Heine, T. & Kis, A. Electronic properties of transition-metal dichalcogenides. MRS Bulletin 40, 577–584 (2015). https://doi.org/10.1557/mrs.2015.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.143

Navigation