Skip to main content
Log in

Padé approximants and resonance poles

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Based on the mathematically well defined Padé theory, a theoretically safe new procedure for the extraction of the pole mass and width of a resonance is proposed. In particular, thanks to the Montessus de Ballore theorem we are able to unfold the second Riemann sheet of an amplitude to search for the position of the resonance pole in the complex plane. The method is systematic and provides a model-independent treatment of the prediction and the corresponding errors of the approximation. Likewise, it can be used in combination with other well-established approaches to improve future determinations of resonance parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. R N (x 0,x 0)=1, without loss of generality.

  2. Notice that, however, scattering amplitude partial-wave projections in general generate a left-hand cut.

  3. See, for example, Eq. (3.1) in Ref. [28], Eqs. (4) and (8) in Ref. [29], and Eq. (6) in Ref. [30] that parameterize the ππ scattering and are then used to precisely determine the σ or f 0(500) meson pole [31, 32].

  4. We thank B. Moussallam for his help with the phase shift from Ref. [33] and its derivatives.

  5. Notice, however, that the fair determinations of the input derivatives originally stem from the Roy–Steiner analysis [33].

References

  1. A.D. Martin, T.D. Spearman, Elementary-Particle Theory (North-Holland, Amsterdam, 1970)

    Google Scholar 

  2. J. Beringer et al., Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  3. N. Suzuki, T. Sato, T.-S.H. Lee, Extraction of resonances from meson-nucleon reactions. Phys. Rev. C 79, 025205 (2009)

    Article  ADS  Google Scholar 

  4. R.L. Workman, R.A. Arndt, M.W. Paris, Resonance parameters from K-matrix and T-matrix poles. Phys. Rev. C 79, 038201 (2009)

    Article  ADS  Google Scholar 

  5. G.A. Baker, P. Graves-Morris, Padé Approximants. Encyclopedia of Mathematics and Its Applications (1996)

    Book  MATH  Google Scholar 

  6. R. de Montessus de Ballore, Sur les fractions continues algebraiques. Bull. Soc. Math. Fr. 30, 28–36 (1902)

    MATH  Google Scholar 

  7. P. Masjuan, S. Peris, J.J. Sanz-Cillero, Vector meson dominance as a first step in a systematic approximation: the pion vector form-factor. Phys. Rev. D 78, 074028 (2008)

    Article  ADS  Google Scholar 

  8. P. Masjuan, γ γπ 0 transition form factor at low-energies from a model-independent approach. Phys. Rev. D 86, 094021 (2012)

    Article  ADS  Google Scholar 

  9. A. Svarc, M. Hadzimehmedovic, H. Osmanovic, J. Stahov, A new method for extracting poles from single-channel data based on Laurent expansion of T-matrices with Pietarinen power series representing the non-singular part (2012)

  10. E. Pietarinen, Dispersion relations and experimental data. Nuovo Cimento A 12, 522–531 (1972)

    Article  ADS  Google Scholar 

  11. C. Beem, L. Rastelli, A. Sen, B.C. van Rees, Resummation and S-duality in N=4 SYM (2013)

  12. S. Peris, Large-N(c) QCD and Padé approximant theory. Phys. Rev. D 74, 054013 (2006)

    Article  ADS  Google Scholar 

  13. P. Masjuan, J.J. Sanz-Cillero, J. Virto, Some remarks on the Padé unitarization of low-energy amplitudes. Phys. Lett. B 668, 14–19 (2008)

    Article  ADS  Google Scholar 

  14. P. Masjuan, S. Peris, Padé theory applied to the vacuum polarization of a heavy quark. Phys. Lett. B 686, 307–312 (2010)

    Article  ADS  Google Scholar 

  15. C. Pommerenke, J. Math. Anal. Appl. 41, 775 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Masjuan, S. Peris, A rational approach to resonance saturation in large-N(c) QCD. J. High Energy Phys. 0705, 040 (2007)

    Article  ADS  Google Scholar 

  17. P. Masjuan, S. Peris, A rational approximation to 〈VVAA〉 and its O(p6) low-energy constant. Phys. Lett. B 663, 61–65 (2008)

    Article  ADS  Google Scholar 

  18. P. Masjuan, M. Vanderhaeghen, Ballpark prediction for the hadronic light-by-light contribution to the muon (g−2) μ (2012)

  19. J.J. Sanz-Cillero, Padé theory and phenomenology of resonance poles (2010)

  20. P. Masjuan, Hunting resonance poles with rational approximants (2010)

  21. J.F. De Troconiz, F.J. Yndurain, Precision determination of the pion form-factor and calculation of the muon g-2. Phys. Rev. D 65, 093001 (2002)

    Article  ADS  Google Scholar 

  22. D. Gomez Dumm, A. Pich, J. Portoles, The hadronic off-shell width of meson resonances. Phys. Rev. D 62, 054014 (2000)

    Article  ADS  Google Scholar 

  23. J.A. Oller, E. Oset, J.E. Palomar, Pion and kaon vector form-factors. Phys. Rev. D 63, 114009 (2001)

    Article  ADS  Google Scholar 

  24. J.J. Sanz-Cillero, A. Pich, Rho meson properties in the chiral theory framework. Eur. Phys. J. C 27, 587–599 (2003)

    Article  ADS  Google Scholar 

  25. J.J. Sanz-Cillero, Renormalization group equations in resonance chiral theory. Phys. Lett. B 681, 100–104 (2009)

    Article  ADS  Google Scholar 

  26. G.J. Gounaris, J.J. Sakurai, Finite width corrections to the vector meson dominance prediction for rho —> e+ e-. Phys. Rev. Lett. 21, 244–247 (1968)

    Article  ADS  Google Scholar 

  27. S.N. Cherry, M.R. Pennington, There is no kappa(900). Nucl. Phys. A 688, 823–841 (2001)

    Article  ADS  Google Scholar 

  28. F.J. Yndurain, R. Garcia-Martin, J.R. Pelaez, Experimental status of the pi pi isoscalar S wave at low energy: f0(600) pole and scattering length. Phys. Rev. D 76, 074034 (2007)

    Article  ADS  Google Scholar 

  29. I. Caprini, Finding the sigma pole by analytic extrapolation of ππ scattering data. Phys. Rev. D 77, 114019 (2008)

    Article  ADS  Google Scholar 

  30. R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, F.J. Yndurain, The pion-pion scattering amplitude. IV: improved analysis with once subtracted Roy-like equations up to 1100 MeV. Phys. Rev. D 83, 074004 (2011)

    Article  ADS  Google Scholar 

  31. I. Caprini, G. Colangelo, H. Leutwyler, Mass and width of the lowest resonance in QCD. Phys. Rev. Lett. 96, 132001 (2006)

    Article  ADS  Google Scholar 

  32. R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, Precise determination of the f0(600) and f0(980) pole parameters from a dispersive data analysis (2011)

  33. P. Buettiker, S. Descotes-Genon, B. Moussallam, A new analysis of pi K scattering from Roy and Steiner type equations. Eur. Phys. J. C 33, 409–432 (2004)

    Article  ADS  Google Scholar 

  34. B. Moussallam, Private communication

  35. S. Descotes-Genon, B. Moussallam, The K*0 (800) scalar resonance from Roy–Steiner representations of pi K scattering. Eur. Phys. J. C 48, 553 (2006)

    Article  ADS  Google Scholar 

  36. D.V. Bugg, An update on the kappa. Phys. Rev. D 81, 014002 (2010)

    Article  ADS  Google Scholar 

  37. Z.Y. Zhou, H.Q. Zheng, An improved study of the kappa resonance and the non-exotic s wave πK scatterings up to \(\sqrt{s}=2.1\ \mbox{GeV}\) of LASS data. Nucl. Phys. A 775, 212–223 (2006)

    Article  ADS  Google Scholar 

  38. J.R. Pelaez, Light scalars as tetraquarks or two-meson states from large N(c) and unitarized chiral perturbation theory. Mod. Phys. Lett. A 19, 2879–2894 (2004)

    Article  ADS  Google Scholar 

  39. Z.-H. Guo, J.A. Oller, J. Ruiz de Elvira, Chiral dynamics in form factors, spectral-function sum rules, meson-meson scattering and semi-local duality. Phys. Rev. D 86, 054006 (2012)

    Article  ADS  Google Scholar 

  40. S. Schael et al., Branching ratios and spectral functions of tau decays: final ALEPH measurements and physics implications. Phys. Rep. 421, 191–284 (2005)

    Article  ADS  Google Scholar 

  41. M. Davier, A. Hocker, Z. Zhang, The physics of hadronic tau decays. Rev. Mod. Phys. 78, 1043–1109 (2006)

    Article  ADS  Google Scholar 

  42. B. Hyams, C. Jones, P. Weilhammer, W. Blum, H. Dietl et al., pi pi phase shift analysis from 600-MeV to 1900-MeV. Nucl. Phys. B 64, 134–162 (1973)

    Article  ADS  Google Scholar 

  43. G. Grayer, B. Hyams, C. Jones, P. Schlein, P. Weilhammer et al., High statistics study of the reaction pi- p –> pi- pi+ n: apparatus, method of analysis, and general features of results at 17-GeV/c. Nucl. Phys. B 75, 189 (1974)

    Article  ADS  Google Scholar 

  44. S.A. Rakityansky, S.A. Sofianos, N. Elander, Padé approximation of the S-matrix as a way of locating quantum resonances and bound states. J. Phys. A 40, 14857–14869 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Roy equation analysis of pi pi scattering. Phys. Rep. 353, 207–279 (2001)

    Article  ADS  MATH  Google Scholar 

  46. M. Feuillat, J.L.M. Lucio, J. Pestieau, Masses and widths of the rho+-,0 (770). Phys. Lett. B 501, 37–43 (2001)

    Article  ADS  Google Scholar 

  47. J.J. Sanz-Cillero, A. Pich, Rho meson properties in the chiral theory framework. Eur. Phys. J. C 27, 587–599 (2003)

    Article  ADS  Google Scholar 

  48. J.R. Pelaez, A. Gomez Nicola, Meson resonances from unitarized meson scattering at one loop in chiral perturbation theory (2002), pp. 349–351

  49. J.R. Pelaez, G. Rios, Light scalar mesons: comments on their behavior in the 1/Nc expansion near Nc=3 versus the Nc –> infinity limit (2009)

  50. Z.Y. Zhou, G.Y. Qin, P. Zhang, Z. Xiao, H.Q. Zheng et al., The pole structure of the unitary, crossing symmetric low energy pi pi scattering amplitudes. J. High Energy Phys. 0502, 043 (2005)

    Article  ADS  Google Scholar 

  51. D. Gomez Dumm, P. Roig, Dispersive representation of the pion vector form factor in τππν τ decays (2013)

  52. S. Ceci, M. Korolija, B. Zauner, Model independent extraction of the pole and Breit–Wigner resonance parameters (2013)

  53. G. Breit, E. Wigner, Capture of slow neutrons. Phys. Rev. 49, 519–531 (1936)

    Article  ADS  MATH  Google Scholar 

  54. J. Nieves, E. Ruiz Arriola, Meson resonances at large N(C): complex poles versus Breit–Wigner masses. Phys. Lett. B 679, 449–453 (2009)

    Article  ADS  Google Scholar 

  55. P. Masjuan, E. Ruiz Arriola, W. Broniowski, Systematics of radial and angular-momentum Regge trajectories of light non-strange qqbar-states. Phys. Rev. D 85, 094006 (2012)

    Article  ADS  Google Scholar 

  56. P. Masjuan, E. Ruiz Arriola, W. Broniowski, Meson dominance of hadron form factors and large-Nc phenomenology. Phys. Rev. D 87, 014005 (2013)

    Article  ADS  Google Scholar 

  57. P. Masjuan, E. Ruiz Arriola, W. Broniowski, Reply to “Comment on ‘Systematics of radial and angular-momentum Regge trajectories of light non-strange qqbar-states’ ” (2013)

Download references

Acknowledgements

We would like to thank L. Tiator and B. Moussallam for comments on the manuscript. We are also thankful with B. Moussallam for his help with the phase shift from Ref. [33]. S.C. would like to thank the University of Mainz for its hospitality. This work has been partially supported by the MICINN, Spain, under contract FPA2010-17747 and Consolider-Ingenio CPAN CSD2007-00042, by the Italian Miur PRIN 2009, the Universidad CEU Cardenal Herrera grant PRCEUUCH35/11, the MICINN-INFN fund AIC-D-2011-0818 and by the Deutsche Forschungsgemeinschaft DFG through the Collaborative Research Center “The Low-Energy Frontier of the Standard Model” (SFB 1044). We thank as well the Comunidad de Madrid through Proyecto HEPHACOS S2009/ESP-1473 and the Spanish MINECO Centro de excelencia Severo Ochoa Program under grant SEV-2012-0249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Masjuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masjuan, P., Sanz-Cillero, J.J. Padé approximants and resonance poles. Eur. Phys. J. C 73, 2594 (2013). https://doi.org/10.1140/epjc/s10052-013-2594-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2594-4

Keywords

Navigation