Skip to main content
Log in

Phenotypic Differences Between vacuma and transposa subpopulations of Botrytis cinerea

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

One hundred and twenty-one single-spore strains of Botrytis cinerea isolated from Bordeaux vineyards were molecularly characterized as either transposa or vacuma, two subpopulations of B. cinerea distinguished by the presence of transposable elements. Forty-three vacuma and 68 transposa strains were distributed into two main classes (mycelial or sclerotial) by morphological phenotype according to the organ of origin. Strains isolated from overwintering sclerotia produced exclusively sclerotial colonies. The mycelial growth rate of 21 transposa and 13 vacuma strains was significantly influenced by agar-medium and temperature. The mycelial growth rate was significantly strain-dependent at favourable temperatures (15, 20 and 25 °C), but not at limiting ones (5 and 28 °C): vacuma strains showed the fastest growth rates. The strains of the two subpopulations were similar in virulence on both host species tested (Vitis vinifera and Nicotiana clevelandii). The grapevine leaves were significantly more susceptible to B. cinerea than those of tobacco. A significant negative correlation was established between virulence and mycelial growth rate. The epidemiological consequences concerning population structure of B. cinerea in vineyards are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonso C, Raposo R and Melgareja P (2000) Genetic diversity in Botrytis cinerea populations on vegetable crops in greenhouses in south-eastern Spain. Plant Pathology 49: 234-251

    Google Scholar 

  • Bulit J and Lafon R (1977) Observations sur la contamination des raisons par le Botrytis cinerea Pers. (pp 61-69). In: Travaux dédiés à G Viennot-Bourgin. Société Française de Phytopathologie, Paris, 416 pp

    Google Scholar 

  • Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Bruckner B and Tudzynski P (1994) Variations in ploidy among isolates of Botrytis cinerea: Implications for genetic and molecular analyses. Current Genetics 25: 445-450

    Google Scholar 

  • Chardonnet CO, Sams CE, Trigiano RN and Conway WS (2000) Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopathology 90: 769-774

    Google Scholar 

  • Coley-Smith JR, Verhoeff K and Jarvis WR (1980) The Biology of Botrytis. Academic Press, London

    Google Scholar 

  • Daboussi MJ (1997) Fungal transposable elements and genome evolution. Genetica 100: 253-260

    Google Scholar 

  • Di Lenna P, Marciano P and Magro P (1981) Comparative investigation on morphological and physiological features of three isolates of Botrytis cinerea. Phytopathologische Zeitschrift 100: 203-211

    Google Scholar 

  • Dubos B (2000) Grey mould. In: Féret (ed) Parasitic Fungal Diseases in the Vine. Bordeaux, France

    Google Scholar 

  • Fermaud M, Gaunt RE and Elmer PAG (1994) The influence of Thrips obscuratus on infection and contamination of kiwifruit by Botrytis cinerea. Plant Pathology 43: 953-960

    Google Scholar 

  • Fournier E, Levis C, Fortini D, Leroux P, Giraud T and Brygoo Y (2002) Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus, and its use as a population marker. Mycologia (in press)

  • Giraud T (1998) Etude de la diversité génétique, du mode de reproduction et de la structure des populations du champignon phytopathogène Botrytis cinerea. Thèse Université Paris VI

  • Giraud T, Fortini D, Levis C, Leroux P and Brygoo Y (1997) RFLP markers show genetic recombination in Botrytinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular Biology and Evolution 14: 1177-1185

    Google Scholar 

  • Giraud T, Fortini D, Levis C, Lamarque C, Leroux P, LoBuglio K and Brygoo Y (1999) Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathology 89: 967-973

    Google Scholar 

  • Goto S, Terabayashi T and Yokotsuka I (1980) Identification, cultural properties and pathogenicity of grey mould of grape, Botrytis cinerea. Nippon Nôgeikagaku Kaishi 54: 117-121

    Google Scholar 

  • Grime JP (1979) Plant Strategies and Vegetation Processes. John Wiley, Chichester, New York, Brisbane and Toronto

    Google Scholar 

  • Grindle M (1979) Phenotypic differences between natural and induced variants of Botrytis cinerea. Journal of General Microbiology 111: 109-120

    Google Scholar 

  • Hansen HN and Smith RE (1932) The mechanism of variation in imperfect fungi: Botrytis cinerea. Phytopathology 22: 953-964

    Google Scholar 

  • Jarvis WR (1977). Botryotinia and Botrytis species-taxonomy, physiology and pathogenicity. Monograph no. 15, Ottawa, Research Branch, Canada Department of Agriculture

    Google Scholar 

  • Keller M, Steel CC and Creasy GL (2000) Stilbene accumulation in grapevine tissues: Developmental and environmental effects. Acta Horticulturae 514: 275-286

    Google Scholar 

  • Kerssies A and Bosker-van Zessen AI (1997) Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Disease 81: 781-786

    Google Scholar 

  • Koch E, Badawy HMA and Hoppe HH (1989) Differences between aggressive and non-aggressive single spore lines of Leptosphaeria maculans in cultural characteristics and phytotoxin production. Journal of Phytopathology 124: 52-62

    Google Scholar 

  • Leroux P, Fournier E, Brygoo Y and Panon ML (2002) Biodiversité et variabilité chez Botrytis cinerea, l'agent de la Pourriture grise. Phytoma-La défense des végétaux 554: 38-42

    Google Scholar 

  • Levis C, Fortini D and Brygoo Y (1997) Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Molecular and General Genetics 254: 674-680

    Google Scholar 

  • Lorbeer JW (1980) Variation in Botrytis and Botryotinia. In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The Biology of Botrytis (pp 19-39) Academic Press, New York

    Google Scholar 

  • Martinez F (2002) Etude de la structure génétique et des aptitudes biologiques des populations de Botrytis cinerea Pers. dans le vignoble bordelais. Thèse Université de Bordeaux II

  • McClellan WD and Hewitt WB (1973) Early Botrytis rot of grapes: Time of infection and latency of Botrytis cinerea Pers. in Vitis vinifera L. Phytopathology 63: 1151-1157

    Google Scholar 

  • McDonald JF (1993) Evolution and consequences of transposable elements. Current Opinion in Genetics and Development 3: 855-864

    Google Scholar 

  • McFarlane HH (1968) Plant host-pathogen index to volumes 1-40 (1922-1961). Review of Applied Mycology. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • McGee DC and Petrie GA (1978) Variability of Leptosphaeria maculans in relation to blackleg of oilseed rape. Phytopathology 68: 625-630

    Google Scholar 

  • Möller EM, Bahnweg G, Sandermann H and Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research 20: 6115-6116

    Google Scholar 

  • Nair NG and Allen RN (1993) Infection of grape flowers and berries by Botrytis cinerea as a function of time and temperature. Mycological Research 97: 1012-1014

    Google Scholar 

  • Paul WRC (1929) A comparative morphological and physiological study of a number of strains of Botrytis cinerea Pers. with special reference to their virulence. Transactions of the British Mycological Society 14: 118-135

    Google Scholar 

  • Pugh GJF (1980) Strategies in fungal ecology. Transactions of the British Mycological Society 75: 1-14

    Google Scholar 

  • Pugh GJF and Boddy L (1988) A view of disturbance and life strategies in fungi. Proceedings of the Royal Society of Edinburgh 94B: 3-11

    Google Scholar 

  • Rose MR and Doolittle WF (1983) Molecular biological mechanisms of speciation. Science 220: 157-162

    Google Scholar 

  • Rouxel T, Galla C and Balesdent MH (1994) Du polymorphisme au complexe d'espèces: Combien d'agents pathogènes sont impliqués dans la nécrose du collet du Colza? Agronomie 14: 413-432

    Google Scholar 

  • Smith PA and Corces VG (1991) Drosophila transposable elements: Mechanisms of mutagenesis and interactions with the host genome. Advances in Genetics 29: 229-299

    Google Scholar 

  • Statistical Sciences, S-PLUS (1993) Guide to Statistical and Mathematical Analysis S-PLUS version 3.2. Stat Sci, a division of Mathsoft, Inc., Seattle

    Google Scholar 

  • Thomas CS, Marois JJ and English JT (1988) The effects of wind speed, temperature, and relative humidity on development of aerial mycelium and conidia of Botrytis cinerea on grape. Phytopathology 78: 260-265

    Google Scholar 

  • Thompson JR and Latorre BA (1999) Characterization of Botrytis cinerea from table grapes in Chile using RAPD-PCR. Plant Disease 83: 1090-1094

    Google Scholar 

  • Vallejo I, Santos M, Cantoral JM, Collado IG and Rebordinos L (1996) Chromosomal polymorphism in Botrytis cinerea strains. Hereditas 124: 31-38

    Google Scholar 

  • Yourman LF, Jeffers SN and Dean RA (2001) Phenotype instability in Botrytis cinerea in the absence of benzimidazole and dicarboximide fungicides. Phytopathology 91: 307-315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fermaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, F., Blancard, D., Lecomte, P. et al. Phenotypic Differences Between vacuma and transposa subpopulations of Botrytis cinerea . European Journal of Plant Pathology 109, 479–488 (2003). https://doi.org/10.1023/A:1024222206991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024222206991

Navigation