Skip to main content
Log in

Electron–phonon coupling and charge-transfer excitations in organic systems from many-body perturbation theory

The Fiesta code, an efficient Gaussian-basis implementation of the GW and Bethe–Salpeter formalisms

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We review in this article recent developments within the framework of ab initio many-body perturbation theory aiming at providing an accurate description of the electronic and excitonic properties of π-conjugated organic systems currently used in organic photovoltaic cells. In particular, techniques such as the GW and Bethe–Salpeter formalisms are being benchmarked for acenes, fullerenes, porphyrins, phthalocyanines, and other molecules of interest for solar energy applications. It is shown that not only the electronic properties, but also the electron–phonon coupling matrix elements, and the charge-transfer excitations in donor/acceptor complexes, are accurately described. The present calculations on molecules containing up to a hundred atoms are based on a recently developed Gaussian auxiliary basis implementation of the GW and Bethe–Salpeter formalism, including full dynamics with contour-deformation techniques, as implemented in the Fiesta code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This code originates in a previous implementation of TDDFT using the strictly-localized atomic-like orbital basis implemented in the DFT Siesta [55] package, see [56].

  2. In the case of acenes, see: assessment of density-functionalmodels for organic molecular semiconductors: the role of Hartree–Fock exchange in charge-transfer processes, see [75].

  3. The equivalence between the approach based on differencesof total energies, and the one involving individual electron–phonon matrix elements, (compare, e.g., formulas (1) and (4) in Ref. [77]) has been validated numerically for many systems within DFT (see, e.g., in the case of the acenes the results of Refs. [77] and [78]), even though formally the only existing demonstrations assume the coupling between vibrational modes and free electrons at the Fermi level within the so-called independent boson model [79], one of the few exactly solvable many-body problems.

  4. For a review, see [84].

  5. Very similar results are obtained at the PBE level, see Ref. [84].

  6. The lowest 20 % percentage of exact exchange corresponds to the well-known B3LYP functional, see Ref. [91]

  7. An interesting observation is that a non-self-consistent G 0 W 0 calculation starting from LDA eigenstates leads to a coupling constant which is still significantly larger than the DFT–LDA value, but smaller than the GW psc one, and very similar to that of the hybrid B3LYP functional. As emphasized in the introductory section, single-shot G 0 W 0 calculations result in too small HOMO–LUMO gaps, inducing overscreening expected to soften the variations of the ionic and electronic potential seen by the electrons upon lattice distortion, see data in Ref. [51].

References

  1. Brabec C, Dyakonov V, Parisi J, Sariciftci NS (2003) In: Organic photovoltaics: concepts and realization. Springer series in material science. Springer, New York

  2. B Kippelen, J-L Brédas (2009) Energy Environ Sci 2:251

    Article  CAS  Google Scholar 

  3. Brédas JL, Norton JE, Cornil J et al (2009) Acc Chem Res 42:1691

    Article  Google Scholar 

  4. Quantitative information on solar energy can be found at the International Energy Agency Photovoltaic Power Systems Program. http://www.iea-pvps.org

  5. Park S, Boy A, Beaupré S, Cho S et al (2009) Nat Photonics 3:297

    Article  CAS  Google Scholar 

  6. Chen H-Y et al (2009) Nat Photonics 3:649

    Article  CAS  Google Scholar 

  7. Brabec CJ et al (2001) Adv Funct Mater 11:374

    Article  CAS  Google Scholar 

  8. Scharber MC et al (2006) Adv Mater 18:789

    Article  CAS  Google Scholar 

  9. Kooistra FB et al (2007) Org Lett 9:551

    Article  CAS  Google Scholar 

  10. Tkatchenko A, Romaner L, Hofmann OT et al (2010) MRS Bull 35(6):435

    Article  CAS  Google Scholar 

  11. Aulbur WG, Jonsson L, Wilkins JW (2000) Solid State Phys 54:1

    Article  CAS  Google Scholar 

  12. Shukla MK, Leszczynski J (2006) Chem Phys Lett 428:317

    Article  CAS  Google Scholar 

  13. Zhang Z et al (2008) J Phys Chem C 112:19158

    CAS  Google Scholar 

  14. From the NIST chemistry webbook. http://webbook.nist.gov/chemistry/

  15. Refaely-Abramson S, Baer R, Kronik L (2011) Phys Rev B 84:075144

    Article  Google Scholar 

  16. Dabo I, Ferretti A, Pilvert N et al (2010) Phys Rev B 82:115121

    Article  Google Scholar 

  17. Hedin L (1965) Phys Rev 139:A796

    Article  Google Scholar 

  18. Strinati G, Mattausch HJ, Hanke W (1980) Phys Rev Lett 45:290

    Article  CAS  Google Scholar 

  19. Strinati G, Mattausch HJ, Hanke W (1982) Phys Rev B 25:2867

    Article  CAS  Google Scholar 

  20. Hybertsen MS, Louie SG (1986) Phys Rev B 34:5390

    Article  CAS  Google Scholar 

  21. Godby RW, Schlüter M, Sham LJ (1988) Phys Rev B 37:10159

    Article  Google Scholar 

  22. Sham LJ, Rice TM (1966) Phys Rev 144:708

    Article  CAS  Google Scholar 

  23. Hanke W, Sham LJ (1979) Phys Rev Lett 43:387

    Article  CAS  Google Scholar 

  24. Strinati G (1982) Phys Rev Lett 49:1519

    Article  CAS  Google Scholar 

  25. Rohlfing M, Louie SG (1998) Phys Rev Lett 80:3320

    Article  CAS  Google Scholar 

  26. Benedict LX, Shirley E, Bohn RB (1998) Phys Rev Lett 80:4514

    Article  CAS  Google Scholar 

  27. Albrecht S, Reining L, Del Sole R, Onida G (1998) Phys Rev Lett 80:4510

    Article  CAS  Google Scholar 

  28. Tiago ML, Northrup JE, Louie SG (2003) Phys Rev B 67:115212

    Article  Google Scholar 

  29. Hummer K, Puschnig P, Ambrosch-Draxl C (2004) Phys Rev Lett 92:147402

    Article  Google Scholar 

  30. Puschnig P, Ambrosch-Draxl C (2009) Com Ren Phys 10:504

    Article  CAS  Google Scholar 

  31. Dori N, Menon M, Kilia L et al (2006) Phys Rev B 73:195208

    Article  Google Scholar 

  32. Ethridge EC, Fry JL, Zaider M (1996) Phys Rev B 53:3662

    Article  CAS  Google Scholar 

  33. van der Horst J-W, Bobbert PA, Michels MAJ, Brocks G, Kelly PJ (1999) Phys Rev Lett 83:4413

    Article  Google Scholar 

  34. Rohlfing M, Louie SG (1999) Phys Rev Lett 82:1959

    Article  CAS  Google Scholar 

  35. Tiago ML, Rohlfing M, Louie SG (2004) Phys Rev B 70:193204

    Article  Google Scholar 

  36. Rignanese GM, Blase X, Louie SG (2001) Phys Rev Lett 86:2110

    Article  CAS  Google Scholar 

  37. Neaton JB, Hybertsen Mark S, Louie Steven G (2006) Phys Rev Lett 97:216405

    Article  CAS  Google Scholar 

  38. Quek SY, Neaton JB, Hybertsen MS, Kaxiras E, Louie SG (2007) Phys Rev Lett 98:066807

    Article  Google Scholar 

  39. Garcia-Lastra JM, Thygesen KS (2011) Phys Rev Lett 106:187402

    Article  CAS  Google Scholar 

  40. Garcia-Lastra JM, Thygesen KS (2011) Phys Rev Lett 107:179901

    Article  Google Scholar 

  41. Tamblyn I, Darancet P, Quek SY, Bonev SA, Neaton JB (2011) Phys Rev B 84:201402(R)

    Article  Google Scholar 

  42. Strange M, Rostgaard C, Hakkinen H, Thygesen KS (2011) Phys Rev B 83:115108

    Article  Google Scholar 

  43. Rangel T, Ferretti A, Trevisanutto PE, Olevano V, Rignanese G-M (2011) Phys Rev B 84:045426

    Article  Google Scholar 

  44. Tiago ML, Chelikowsky JR (2005) Solid State Commun 136:333

    Article  CAS  Google Scholar 

  45. Palummo M, Hogan C, Sottile F et al (2009) J Chem Phys 131:084102

    Article  Google Scholar 

  46. Ma Y, Rohlfing M, Molteni C (2009) Phys Rev B 80:241405

    Article  Google Scholar 

  47. Stenuit G, Castellarin-Cudia C, Plekan O et al (2010) Phys Chem Chem Phys 12:10812

    Article  CAS  Google Scholar 

  48. Umari P, Stenuit G, Baroni S (2010) Phys Rev B 81:115104

    Article  Google Scholar 

  49. Blase X, Attaccalite C, Olevano V (2011) Phys Rev B 83:115103

    Article  Google Scholar 

  50. Blase X, Attaccalite C (2011) Appl Phys Lett 99:171909

    Article  Google Scholar 

  51. Foerster D, Koval P, Sánchez-Portal D (2011) J Chem Phys 135:074105

    Article  CAS  Google Scholar 

  52. Noa M, Xinguo R, Moussa JE et al (2011) Phys Rev B 84:195143

    Article  Google Scholar 

  53. Faber C, Attaccalite C, Olevano V, Runge E, Blase X (2011) Phys Rev B 83:115103

    Article  Google Scholar 

  54. Faber C, Jonathan Laflamme J, Côté M, Runge E, Blase X (2011) Phys Rev B 84:155104

    Article  Google Scholar 

  55. Artacho E, Anglada E, Dieguez O, Gale JD, Garca A, Junquera J, Martin RM, Ordejón P, Pruneda JM, Sánchez-Portal D, Soler JM (2008) J Phys Condens Matter 20:064208

    Google Scholar 

  56. Blase X, Ordejón P (2004) Phys Rev B 69:085111

    Google Scholar 

  57. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  58. Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (2006) In: Time-dependent density functional theory. Springer, Berlin Heidelberg

    Book  Google Scholar 

  59. Casida ME (2009) J Mol Struct (Theochem) 914:3

    Article  CAS  Google Scholar 

  60. Rohlfing M, Krüger P, Pollmann J (1995) Phys Rev B 52:1905

    Article  CAS  Google Scholar 

  61. Pavlyukh Y, Hubner W (2004) Phys Lett A 327:241

    Article  CAS  Google Scholar 

  62. Chang E, Bussi G, Ruini A, Molinari E (2004) Phys Rev Lett 92:196401

    Article  Google Scholar 

  63. Cherkes I, Klaiman S, Miseyev N (2009) Int J Quantum Chem 109:2996

    Article  CAS  Google Scholar 

  64. Aryasetiawan F, Gunnarsson O (1994) Phys Rev B 49:16214

    Article  CAS  Google Scholar 

  65. Tiago ML, Chelikowsky JR (2006) Phys Rev B 73:205334

    Article  Google Scholar 

  66. Anglada E, Soler JM, Junquera J, Artacho E (2002) Phys Rev B 66:205101

    Article  Google Scholar 

  67. Farid B (1999) . In: March NH (eds) Electron correlation in the solid state. World Scientific, Singapore, p 217 (references therein)

  68. Hahn PH, Schmidt WG, Bechstedt F (2005) Phys Rev B 72:245425

    Article  Google Scholar 

  69. Rostgaard C, Jacobsen KW, Thygesen KS (2010) Phys Rev B 81:085103

    Article  Google Scholar 

  70. Kaasbjerg K, Thygesen KS (2010) Phys Rev B 81:085102

    Article  Google Scholar 

  71. Ke SH (2011) Phys Rev B 84:205415

    Article  Google Scholar 

  72. Bravaya KB, Kostko O, Dolgikh S, Landau A et al (2010) J Phys Chem A 114:12305 (references therein)

    Google Scholar 

  73. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Chem Rev 107:926

    Article  CAS  Google Scholar 

  74. Hatch RC, Huber DL, Hartmut H (2010) Phys Rev Lett 104:047601

    Article  Google Scholar 

  75. Sancho-García JC (2007) Chem Phys 331:321

  76. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Rev Mod Phys 73:515

    Article  CAS  Google Scholar 

  77. Coropceanu V, Malagoli M, da Silva Filho DA, Gruhn NE, Bill TG, Brédas JL (2002) Phys Rev Lett 89:275503

    Article  CAS  Google Scholar 

  78. Kato T et al (2002) J Chem Phys 116:3420

    Article  CAS  Google Scholar 

  79. Mahan GD (1990) In: Many-particle physics, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  80. Schlüter M, Lannoo M, Needels M, Baraff GA, Tománek D (1992) Phys Rev Lett 68:526

    Article  Google Scholar 

  81. Antropov VP, Gunnarsson O, Liechtenstein AI (1993) Phys Rev B 48:7651

    Article  CAS  Google Scholar 

  82. Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW et al (1991) Nature (London) 350:600

    Article  CAS  Google Scholar 

  83. Ganin AY, Takabayashi Y, Khimyak YZ, Margadonna S, Tamai A, Rosseinsky MJ, Prassides K (2008) Nat Mater 7:367

    Article  CAS  Google Scholar 

  84. Gunnarsson O (1997) Rev Mod Phys 69:575

    Google Scholar 

  85. Hands ID, Dunn JL, Janette L, Bates CA, Colin A, Hope MJ, Michael J, Meech SR, Andrews DL (2008) Phys Rev B 77:115445

    Article  Google Scholar 

  86. Wang X-B, Woo H-K, Wang L-S (2005) J Chem Phys 123:051106

    Article  Google Scholar 

  87. Saito M (2002) Phys Rev B 65:220508(R)

    Google Scholar 

  88. Laflamme Janssen J, Côté M, Louie SG, Cohen ML (2010) Phys Rev B 81:073106

    Article  Google Scholar 

  89. Iwahara N, Sato T, Tanaka K, Chibotaru LF (2010) Phys Rev B 82:245409

    Article  Google Scholar 

  90. Gunnarsson O, Handschuh H, Bechthold PS, Kessler B, Gantefor G, Eberhardt W (1995) Phys Rev Lett 74:1875

    Article  CAS  Google Scholar 

  91. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  92. Lazzeri M, Attaccalite C, Wirtz L, Mauri F (2008) Phys Rev B 78:081406

    Article  Google Scholar 

  93. Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007

    Google Scholar 

  94. Lange AW, Herbert JM (2009) J Am Chem Soc 131:3913 (see in particular the Supplementary materials)

    Google Scholar 

  95. Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131:2818

    Article  CAS  Google Scholar 

  96. Hanazaki IJ (1972) Phys Chem 76:1982

    Article  CAS  Google Scholar 

  97. Massnovi JM, Seddon EA, Kochi JJ (1984) J Can J Chem 62:2552

    Article  Google Scholar 

  98. Marini A, Hogan C, Grüning M, Varsano D (2009) Comput Phys Commun 180:1392

    Article  CAS  Google Scholar 

  99. McMahon DP, Cheung DL, Troisi A (2011) J Phys Chem Lett 2:2737

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computing time has been provided by the local CIMENT and national IDRIS supercomputing (Project no. 100063) centers in Grenoble and Orsay, respectively. The authors acknowledge Dr. Laflamme Janssen, Pr. Michel Côté, and Pr. Erich Runge, with whom parts of the work presented in this review were achieved, and Pr. Mark Casida for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Blase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, C., Duchemin, I., Deutsch, T. et al. Electron–phonon coupling and charge-transfer excitations in organic systems from many-body perturbation theory. J Mater Sci 47, 7472–7481 (2012). https://doi.org/10.1007/s10853-012-6401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6401-7

Keywords

Navigation