Skip to main content
Log in

Realization of dimensional reduction at high temperature

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

Renormalizable four-dimensional field theories reduce at high temperature to effective three-dimensional field models with generically nonlocal interactions induced by the thermal degrees of freedom. Reduction to a local and renormalizable effective model is analyzed here for the example ofSU(N c ) lattice gauge theory by means of perturbation theory. The infrared problems are cured by applying the coupled large volume and small coupling expansion. ForSU(2) it is shown to the lower orders in this expansion that in the temperature rangeT≧3T c dimensional reduction applies, where we consider the following observables: thermal Polyakov line correlations, out of which the interquark potential is derived, and spatial Wilson loops. We also propose an alternative description, in which the effective theory is a gauge theory that lives on a lattice with one time slice and a least number of effective vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Rivers: Path integral methods in quantum field theory. Cambridge: Cambridge University Press 1987

    Google Scholar 

  2. J.I. Kapusta: Finite temperature field theory. Cambridge: Cambridge University Press 1989

    Google Scholar 

  3. N.P. Landsman: Nucl. Phys. B 322 (1989) 498

    Google Scholar 

  4. R. Alvarez-Estrada: Fortschr. Phys. 36 (1988) 163

    Google Scholar 

  5. J. Ambjørn: Commun. Math. Phys. 67 (1979) 109

    Google Scholar 

  6. T. Appelquist, J. Carazzone: Phys. Rev. D 11 (1975) 2856; T. Appelquist, R.D. Pisarski: Phys. Rev. D23 (1981) 2305

    Google Scholar 

  7. W.E. Caswell, A.D. Kennedy: Phys. Rev. D 28 (1983) 3073

    Google Scholar 

  8. S. Nadkarni: Phys. Rev. D 27 (1983) 917

    Google Scholar 

  9. S. Nadkarni: Phys. Rev. D 38 (1988) 3287

    Google Scholar 

  10. A.N. Jourjine: Ann. Phys. 155 (1984) 305

    Google Scholar 

  11. C. Curci, P. Menotti, G. Paffuti: Z. Phys. C — Particles and Fields 26 (1985) 549

    Google Scholar 

  12. T. Reisz: J. Math. Phys. 32 (1991) 515

    Google Scholar 

  13. B. Petersson, T. Reisz: Nucl. Phys. B 353 (1991) 757

    Google Scholar 

  14. T. Reisz: Commun. Math. Phys. 117 (1988) 79

    Google Scholar 

  15. A. Irbäck et al.: Nucl. Phys. B 363 (1991) 34

    Google Scholar 

  16. T. Reisz: Commun. Math. Phys. 116 (1988) 573

    Google Scholar 

  17. A. Coste, A. Gonzalez-Arroyo, J. Jurkiewicz, C.P. Korthals-Altes. Nucl. Phys. B 262 (1985) 67

    Google Scholar 

  18. P. Weisz: Nucl. Phys. B 212 (1983) 1

    Google Scholar 

  19. U. Heller, F. Karsch: Nucl. Phys. B 251 [FS13] (1985) 254

    Google Scholar 

  20. V.S. Dotsenko, S.N. Vergeles: Nucl. Phys. B 169 (1980) 527

    Google Scholar 

  21. C. Borgs, E. Seiler: Nucl. Phys. B 215 [FS] (1983) 125

    Google Scholar 

  22. C. Borgs, E. Seiler: Commun. Math Phys. 91 (1983) 329

    Google Scholar 

  23. T. Reisz: Nucl. Phys. B 318 (1989) 417

    Google Scholar 

  24. H. Matsumoto, I. Ojima, H. Umezawa: Ann. Phys. 152 (1984) 348

    Google Scholar 

  25. N.P. Landsman, Ch.G. van Weert: Phys. Rep. 145 (1987) 141

    Google Scholar 

  26. S. Nadkarni: Phys. Rev. D 33 (1986) 3738

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisz, T. Realization of dimensional reduction at high temperature. Z. Phys. C - Particles and Fields 53, 169–176 (1992). https://doi.org/10.1007/BF01483886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01483886

Keywords

Navigation