Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 828))

Abstract

We provide a review to holographic models based on Einstein-dilaton gravity with a potential in five dimensions. Such theories, for a judicious choice of potential are very close to the physics of large-N YM theory both at zero and finite temperature. The zero temperature glueball spectra as well as their finite temperature thermodynamic functions compare well with lattice data. The model can be used to calculate transport coefficients, like bulk viscosity, the drag force and jet quenching parameters, relevant for the physics of the Quark–Gluon Plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are very few observables also that are not in agreement with YM. They are discussed in detail in [25].

  2. 2.

    These are the leading transport coefficients in the derivative expansion. There are subleading coefficients that have been calculated recently for \({\mathcal{N}}=4\) SYM [37, 38]. However, at the present level of accuracy, they cannot affect substantially the comparison to experimental data [5].

  3. 3.

    Most are reviewed in [51].

  4. 4.

    Similar models of Einstein-dilaton gravity were proposed independently in [26] to describe the finite temperature physics of large \(N_c\) YM. They differ in the UV as the dilaton corresponds to a relevant operator instead of the marginal case we study here. The gauge coupling \(e^{\Upphi}\) also asymptotes to a constant instead of zero in such models.

  5. 5.

    This relation is well motivated in the UV, although it may be modified at strong coupling (see Sect. 4.3. The quantities we will calculate do not depend on the explicit relation between \(\lambda\) and \(\lambda_t\).

  6. 6.

    With a slight abuse of notation we will denote \(V(\lambda)\) the function \(V(\Upphi)\) expressed as a function of \(\lambda\equiv e^\Upphi\).

  7. 7.

    We call “bad singularities” those that do not have a well defined spectral problem for the fluctuations without imposing extra boundary conditions.

  8. 8.

    The periods and three-space volumes of the thermal gas solution are related to the black-hole solution values by requiring that the geometry of the two solutions are the same on the (regulated) boundary. See [29] for details.

  9. 9.

    As the dilaton is now not constant there is a non-trivial question: in which frame is the metric AdS. In [25] it was argued that this should be the case in the string frame. The difference of course between the string and Einstein frame is subleading in the UV as the coupling constant vanishes logarithmically. But this may not be the case in the IR where we have very few criteria to check. In the model we are using we impose that the space is asymptotically AdS in the Einstein frame as this is the only choice consistent with the whole framework.

  10. 10.

    We would like to thank K. Kajantie for asking the question, suggesting to compare with lattice data, and providing the appropriate references.

  11. 11.

    The string scale factor is not a monotonic function on the whole manifold [23, 24], and this is the reason that it was not taken as a global energy scale. In particular in the UV, \(e^{A_s}\) decreases until it reaches a minimum. The existence of the minimum is crucial for confinement. After this minimum \(e^{A_s}\) increases and diverges at the IR singularity.

  12. 12.

    Further studies of IHQCD with different potentials can be found in [69].

  13. 13.

    Moreover, higher order \(\beta\)-function coefficients are known to be scheme-dependent.

  14. 14.

    Note that this is conceptually different from the \({\mathcal{N}}=4\) case. There, near the boundary, the theory is strongly coupled and this number must be calculated in string theory. It is different by a factor of 3/4 from the free sYM answer. Here near the boundary the theory is free. Therefore the number of degrees of freedom can be directly inferred.

  15. 15.

    The remaining two are the value \(f(0)\) which should be set to one for the solution (4.9) to obey the right UV asymptotics, and an unphysical degree of freedom in the reparametrization of the radial coordinate.

  16. 16.

    See e.g. [7173], in which results for \(N_c=8\) do not different significantly from those for \(N_c=3\) as well as the recent high-precision data by Panero [74, 75].

  17. 17.

    Spin 1 excitations of the metric can be shown to be non-normalizable.

  18. 18.

    A further reason is that, unlike the scalar and (to some extent) the pseudoscalar sector that we are considering, the action governing the higher Regge slopes is less and less universal as one goes to higher masses. Only a precise knowledge of the underline string theory is expected to provide detailed information for such states.

  19. 19.

    This action was justified in [2325]. The dilaton dependent coefficient \(Z(\lambda)\) is encoding both the dilaton dependence as well as the UV curvature dependence of the axion kinetic terms in the associated string theory. We cannot determine it directly from the string theory, but we pin it down by a combination of first principles and lattice input, as we explain further below.

  20. 20.

    Difference in the various numerical factors in this equation w.r.t [92] is due to our different normalization of the dilaton kinetic term.

  21. 21.

    As far as the thermodynamics of the gluon plasma is concerned, the temperatures below \(T_c\) (on the large BH branch) has little importance, because for \(T<T_c\) the plasma is in the confined phase.

  22. 22.

    Note that \(c_b\) is also a function of \(\lambda_h\). As both the fluctuation (4.59) and the boundary conditions are smooth at \(\lambda_h=\lambda_{\min}\), one concludes that \(c_b\) also is smooth at this point.

  23. 23.

    See the discussion at appendix B of [93].

  24. 24.

    Various coefficients in these equations differ from [26] due to our different normalization of the dilaton kinetic term.

  25. 25.

    This argument may break down for two (dependent) reasons: First of all the adiabatic approximation becomes lees good near \(\Upphi_c\). This is because, in this region \(V'/V\) varies relatively more rapidly as a function of \(\Upphi\). Secondly, precisely because of this, even though \(\Upphi_c\) is not far away from \(\Upphi_*\) the difference can result in a considerable change in the value of \(\zeta/s\) through (4.76).

  26. 26.

    Since this theory contains two derivatives only, \(\frac{\eta}{s}\) has the universal value \(1/4\pi\).

  27. 27.

    This representation ignores the fact that the \(kinetic\) mass of a moving quark may be different from the static mass [17].

  28. 28.

    It would stop at the confinement radius if the latter were closer to the boundary than the horizon, i.e. if \(r_*(T) < r_h(T)\). However, in the model we are considering, in the large BH branch we find that the relation \(r_h < r_* \) is always satisfied.

  29. 29.

    For a possible field theoretical explanation of this phenomenon, see [103].

  30. 30.

    This is itself an approximation, since as we know both from experiment and in our holographic model, the plasma is strongly coupled up to temperatures of a few \(T_c.\)

  31. 31.

    Even if we choose \(\epsilon=r_{\min}\), the new singularity at \(r=r_{\min}\) is also integrable as suggested from (4.131).

  32. 32.

    In practise, the previous discussion including regularizing the UV is academic. The numerical calculation is done with a finite cutoff where the boundary conditions for the couplings are imposed.

  33. 33.

    In this case, the value of \(\ell_s\) appearing in (4.143) is fixed as explained in Sect. 4.4.

References

  1. Adams, J., et al. [STAR Collaboration]: Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005) [ArXiv:nucl-ex/0501009]

    Google Scholar 

  2. Back, B.B., et al.: The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28 (2005) [ArXiv:nucl-ex/0410022]

    Article  ADS  Google Scholar 

  3. Arsene, I., et al. [BRAHMS Collaboration]: Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1 (2005) [ArXiv:nucl-ex/0410020]

    Google Scholar 

  4. Adcox, K., et al. [PHENIX Collaboration]: Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184 (2005) [ArXiv:nucl-ex/0410003]

    Google Scholar 

  5. Luzum, M., Romatschke, P.: Conformal relativistic viscous hydrodynamics: applications to RHIC results at \(\sqrt{s_{NN}} = 200\,{\text{GeV} }\). Phys. Rev. C 78, 034915 (2008) [ArXiv:0804.4015][nucl-th]

    Article  ADS  Google Scholar 

  6. Policastro, G., Son, D.T., Starinets, A.O.: The shear viscosity of strongly coupled N = 4 supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 87, 081601 (2001) [ArXiv:hep-th/0104066]

    Article  ADS  Google Scholar 

  7. Kovtun, P., Son, D.T., Starinets, A.O.: Viscosity in strongly interacting quantum field theories from black-hole physics. Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-th/0405231]

    Article  ADS  Google Scholar 

  8. Shuryak, E.: Physics of strongly coupled quark–gluon plasma. Prog. Part. Nucl. Phys. 62, 48–101 (2009) [ArXiv:0807.3033][hep-ph]

    Article  ADS  Google Scholar 

  9. Son, D.T., Starinets, A.O.: Viscosity, black holes, and quantum field theory. Ann. Rev. Nucl. Part. Sci. 57, 95 (2007) [ArXiv:0704.0240][hep-th]

    Article  ADS  Google Scholar 

  10. Natsuume, M.: String theory and quark–gluon plasma [ArXiv:hep-ph/0701201]

    Google Scholar 

  11. Karsch, F., Kharzeev, D., Tuchin, K.: Universal properties of bulk viscosity near the QCD phase transition. Phys. Lett. B 663, 217 (2008) [ArXiv:0711.0914][hep-ph]

    Article  ADS  Google Scholar 

  12. Meyer, H.B.: A calculation of the bulk viscosity in SU(3) gluodynamics. Phys. Rev. Lett. 100, 162001 (2008) [ArXiv:0710.3717][hep-lat]

    Article  ADS  Google Scholar 

  13. Meyer, H.B.: Energy–momentum tensor correlators and viscosity. PoS LATTICE 2008 017 (2008) [ArXiv:0809.5202][hep-lat]

    Google Scholar 

  14. Erlich, J., Katz, E., Son, D.T., Stephanov, M.A.: QCD and a holographic model of hadrons. Phys. Rev. Lett. 95, 261602 (2005) [arXiv:hep-ph/0501128]

    Article  ADS  Google Scholar 

  15. Da Rold, L., Pomarol, A.: Chiral symmetry breaking from five dimensional spaces. Nucl. Phys. B 721, 79 (2005) [ArXiv:hep-ph/0501218]

    Article  ADS  MATH  Google Scholar 

  16. Karch, A., Katz, E., Son, D.T., Stephanov, M.A.: Linear confinement and AdS/QCD. Phys. Rev. D 74, 015005 (2006) [ArXiv:hep-ph/0602229]

    Article  ADS  Google Scholar 

  17. Herzog, C.P., Karch, A., Kovtun, P., Kozcaz, C., Yaffe, L.G.: Energy loss of a heavy quark moving through N = 4 supersymmetric Yang–Mills plasma. JHEP 0607, 013 (2006) [ArXiv:hep-th/0605158]

    Article  MathSciNet  ADS  Google Scholar 

  18. Liu, H., Rajagopal, K., Wiedemann, U.A.: Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett. 97, 182301 (2006) [ArXiv:hep-ph/0605178]

    Article  ADS  Google Scholar 

  19. Gubser, S.S.: Drag force in AdS/CFT. Phys. Rev. D 74, 126005 (2006) [ArXiv:hep-th/0605182]

    Article  MathSciNet  ADS  Google Scholar 

  20. Gubser, S.S.: Comparing the drag force on heavy quarks in N = 4 super-Yang–Mills theory and QCD. Phys. Rev. D 76, 126003 (2007) [ArXiv:hep-th/0611272]

    Article  ADS  Google Scholar 

  21. Casalderrey-Solana, J., Teaney, D.: Heavy quark diffusion in strongly coupled N = 4 Yang Mills. Phys. Rev. D 74, 085012 (2006) [ArXiv:hep-ph/0605199]

    Article  ADS  Google Scholar 

  22. Polchinski, J., Strassler, M.J.: Hard scattering and gauge/string duality. Phys. Rev. Lett. 88, 031601 (2002) [ArXiv:hep-th/0109174]

    Article  MathSciNet  ADS  Google Scholar 

  23. Gursoy, U., Kiritsis, E.: Exploring improved holographic theories for QCD: Part I. JHEP 0802, 032 (2008) [ArXiv:0707.1324][hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  24. Gursoy, U., Kiritsis, E., Nitti, F.: Exploring improved holographic theories for QCD: Part II. JHEP 0802, 019 (2008) [ArXiv:0707.1349][hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  25. Kiritsis, E.: Dissecting the string theory dual of QCD. Fortsch. Phys. 57, 396–417 (2009) [ArXiv:0901.1772][hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Gubser, S.S., Nellore, A.: Mimicking the QCD equation of state with a dual black hole. Phys. Rev. D78, 086007 (2008) [ArXiv:0804.0434][hep-th]

    Article  ADS  Google Scholar 

  27. Casero, R., Kiritsis, E., Paredes, A.: Chiral symmetry breaking as open string tachyon condensation. Nucl. Phys. B 787, 98–134 (2007) [ArXiv:hep-th/0702155]

    Article  ADS  Google Scholar 

  28. Gursoy, U., Kiritsis, E., Mazzanti, L., Nitti, F.: Deconfinement and gluon plasma dynamics in improved holographic QCD. Phys. Rev. Lett. 101, 181601 (2008) [ArXiv:0804.0899][hep-th]

    Article  ADS  Google Scholar 

  29. Gursoy, U., Kiritsis, E., Mazzanti, L., Nitti, F.: Holography and thermodynamics of 5D dilaton-gravity. JHEP 0905, 033 (2009) [ArXiv:0812.0792][hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  30. DeWolfe, O., Rosen, C.: Robustness of sound speed and jet quenching for gauge/gravity models of hot QCD. JHEP 0907, 022 (2009) [ArXiv:0903.1458][hep-th]

    Article  ADS  Google Scholar 

  31. Vicari, E., Panagopoulos, H.: Theta dependence of SU(N) gauge theories in the presence of a topological term. Phys. Rep. 470, 93–150 (2009) [ArXiv:0803.1593][hep-th]

    Article  ADS  Google Scholar 

  32. Gursoy, U., Kiritsis, E., Mazzanti, L., Nitti, F.: Improved holographic Yang–Mills at finite temperature: comparison with data. Nucl. Phys. B 820, 148 (2009) [ArXiv:0903.2859][hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  33. Kraus, P.: Dynamics of anti-de Sitter domain walls. JHEP 9912, 011 (1999) [ArXiv:hep-th/9910149]

    Article  MathSciNet  ADS  Google Scholar 

  34. Kiritsis, E.: Supergravity, D-brane probes and thermal super Yang–Mills: a comparison. JHEP 9910, 010 (1999) [ArXiv:hep-th/9906206]

    Article  MathSciNet  ADS  Google Scholar 

  35. Kehagias, A., Kiritsis, E.: Mirage cosmology. JHEP 9911, 022 (1999) [arXiv:hep-th/9910174]

    Article  MathSciNet  ADS  Google Scholar 

  36. Kiritsis, E.: Holography and brane-bulk energy exchange. JCAP 0510, 014 (2005) [ArXiv:hep-th/0504219]

    Article  MathSciNet  ADS  Google Scholar 

  37. Baier, R., Romatschke, P., Son, D.T., Starinets, A.O., Stephanov, M.A.: Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP 0804, 100 (2008) [ArXiv:0712.2451][hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  38. Bhattacharyya, S., Hubeny, V.E., Minwalla, S., Rangamani, M.: Nonlinear fluid dynamics from gravity. JHEP 0802, 045 (2008) [ArXiv:0712.2456][hep-th]

    Article  ADS  Google Scholar 

  39. Meyer, H.B.: A calculation of the shear viscosity in SU(3) gluodynamics. Phys. Rev. D 76, 101701 (2007) [ArXiv:0704.1801][hep-lat]

    Article  ADS  Google Scholar 

  40. Kharzeev, D., Tuchin, K.: Bulk viscosity of QCD matter near the critical temperature. JHEP 0809, 093 (2008) [ArXiv:0705.4280][hep-ph]

    Article  ADS  Google Scholar 

  41. Karsch, F., Kharzeev, D., Tuchin, K.: Universal properties of bulk viscosity near the QCD phase transition. Phys. Lett. B 663, 217 (2008) [ArXiv:0711.0914][hep-ph]

    Article  ADS  Google Scholar 

  42. Teaney, D.: Finite temperature spectral densities of momentum and R-charge correlators in N = 4 Yang Mills theory. Phys. Rev. D 74, 045025 (2006) [ArXiv:hep-ph/0602044]

    Article  ADS  Google Scholar 

  43. Romatschke, P., Son, D.T.: Spectral sum rules for the quark–gluon plasma. Phys. Rev. D 80, 065021 (2009) [ArXiv:0903.3946][hep-ph]

    Article  ADS  Google Scholar 

  44. Heinz, U.: Talk at the Extra strong quark gluon plasma (ESQGP), Stony Brook (2008)

    Google Scholar 

  45. Adare, A., et al. [PHENIX Collaboration]: Energy loss and flow of heavy quarks in Au+Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys. Rev. Lett. 98, 172301 (2007) [ArXiv:nucl-ex/0611018]

    Google Scholar 

  46. Borghini, N., Wiedemann, U.A.: Predictions for the LHC heavy ion programme. J. Phys. G 35, 023001 (2008) [ArXiv:0707.0564][hep-ph]

    Article  ADS  Google Scholar 

  47. Baier, R., Dokshitzer, Y.L., Mueller, A.H., Peigne, S., Schiff, D.: Radiative energy loss of high energy quarks and gluons in a finite-volume quark–gluon plasma. Nucl. Phys. B 483, 291 (1997) [ArXiv:hep-ph/9607355]

    Article  ADS  Google Scholar 

  48. Baier, R., Dokshitzer, Y.L., Mueller, A.H., Peigne, S., Schiff, D.: Radiative energy loss and p(T)-broadening of high energy partons in nuclei. Nucl. Phys. B 484, 265 (1997) [ArXiv:hep-ph/9608322]

    Article  ADS  Google Scholar 

  49. Zakharov, B.G.: Radiative energy loss of high energy quarks in finite-size nuclear matter and quark–gluon plasma. JETP Lett. 65, 615 (1997) [ArXiv:hep-ph/9704255]

    Article  ADS  Google Scholar 

  50. Akamatsu, Y., Hatsuda, T., Hirano, T.: Heavy quark diffusion with relativistic langevin dynamics in the quark–gluon fluid [ArXiv:0809.1499][hep-ph]

    Google Scholar 

  51. Gubser, S.S., Pufu, S.S., Rocha, F.D., Yarom, A.: Energy loss in a strongly coupled thermal medium and the gauge–string duality [ArXiv:0902.4041][hep-th]

    Google Scholar 

  52. Liu, H., Rajagopal, K., Wiedemann, U.A.: Wilson loops in heavy ion collisions and their calculation in AdS/CFT. JHEP 0703, 066 (2007) [ArXiv:hep-ph/0612168]

    Article  ADS  Google Scholar 

  53. Svetitsky, B.: Diffusion of charmed quark in the quark gluon plasma. Phys. Rev. D 37, 2484 (1988)

    Article  ADS  Google Scholar 

  54. van Hees, H., Rapp, R.: Thermalization of heavy quarks in the quark–gluon plasma. Phys. Rev. C 71, 034907 (2005) [ArXiv:nucl-th/0412015]

    Article  ADS  Google Scholar 

  55. Moore, G.D., Teaney, D.: How much do heavy quarks thermalize in a heavy ion collision?. Phys. Rev. C 71, 064904 (2005) [ArXiv:hep-ph/0412346]

    Article  ADS  Google Scholar 

  56. van Hees, H., Greco, V., Rapp, R.: Heavy-quark probes of the quark–gluon plasma at RHIC. Phys. Rev. C 73, 034913 (2006) [ArXiv:nucl-th/0508055]

    Article  ADS  Google Scholar 

  57. Gubser, S.S.: Momentum fluctuations of heavy quarks in the gauge–string duality. Nucl. Phys. B 790, 175 (2008) [ArXiv:hep-th/0612143]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. de Boer, J., Hubeny, V.E., Rangamani, M., Shigemori, M.: Brownian motion in AdS/CFT. JHEP 0907, 094 (2004) [ArXiv:0812.5112][hep-th]

    ADS  Google Scholar 

  59. Son, D.T., Teaney, D.: Thermal noise and stochastic strings in AdS/CFT. JHEP 0907 021, (2009), [ArXiv:0901.2338 [hep-th]

    Google Scholar 

  60. Giecold, G.C., Iancu, E., Mueller, A.H.: Stochastic trailing string and Langevin dynamics from AdS/CFT. JHEP 0907 033, (2009), [ArXiv:0903.1840] [hep-th]

    Google Scholar 

  61. Debbasch, F., Mallick, K., Rivet, K.P.: Relativistic Ornstein–Uhlenbeck process. J. Stat. Phys. 88, 945 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Chevalier, C., Debbasch, F.: Relativistic diffusions: a unifying approach. J. Math. Phys. 49, 043303 (2008)

    Article  MathSciNet  Google Scholar 

  63. Caron-Huot, S., Kovtun, P., Moore, G.D., Starinets, A., Yaffe, L.G.: Photon and dilepton production in supersymmetric Yang–Mills plasma. JHEP 0612, 015 (2006) [ArXiv:hep-th/0607237]

    Article  ADS  Google Scholar 

  64. Sin, S.J., Zahed, I.: Holography of radiation and jet quenching. Phys. Lett. B 608, 265 (2005) [ArXiv:hep-th/0407215]

    Article  ADS  Google Scholar 

  65. Sin, S.J., Zahed, I.: Ampere’s law and energy loss in AdS/CFT duality. Phys. Lett. B 648, 318 (2007) [ArXiv:hep-ph/0606049]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998) [ArXiv:hep-th/9803131]

    MathSciNet  MATH  Google Scholar 

  67. Kinar, Y., Schreiber, E., Sonnenschein, J.: Q anti–Q potential from strings in curved spacetime: classical results. Nucl. Phys. B 566, 103 (2000) [ArXiv:hep-th/9811192]

    Article  MathSciNet  MATH  Google Scholar 

  68. Heitger, J., Simma, H., Sommer, R., Wolff, U. [ALPHA collaboration]: The Schroedinger functional coupling in quenched QCD at low energies. Nucl. Phys. Proc. Suppl. 106, 859 (2002) [ArXiv:hep-lat/0110201]

    Google Scholar 

  69. Alanen, J., Kajantie, K., Suur-Uski, V.: A gauge/gravity duality model for gauge theory thermodynamics. Phys. Rev. D 80, 126008 (2009) [ArXiv:0911.2114][hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  70. Boyd, G., Engels, J., Karsch, F., Laermann, E., Legeland, C., Lutgemeier, M., Petersson, B.: Thermodynamics of SU(3) lattice gauge theory. Nucl. Phys. B 469, 419 (1996) [ArXiv:hep-lat/9602007]

    Article  ADS  Google Scholar 

  71. Lucini, B., Teper, M., Wenger, U.: The deconfinement transition in SU(N) gauge theories. Phys. Lett. B 545, 197 (2002) [ArXiv:hep-lat/0206029]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. Lucini, B., Teper, M., Wenger, U.: The high temperature phase transition in SU(N) gauge theories. JHEP 0401, 061 (2004) [ArXiv:hep-lat/0307017]

    Article  ADS  Google Scholar 

  73. Bringoltz, B., Teper, M.: The pressure of the SU(N) lattice gauge theory at large-N. Phys. Lett. B 628, 113 (2005) [ArXiv:hep-lat/0506034]

    Article  ADS  Google Scholar 

  74. Panero, M.: Thermodynamics of the QCD plasma and the large-N limit. Phys. Rev. Lett. 103, 232001 (2009) [ArXiv:0907.3719][hep-lat]

    Article  ADS  Google Scholar 

  75. Panero, M.: Thermodynamics of the strongly interacting gluon plasma in the large-N limit. PoS LAT2009 172, (2009), [ArXiv:0912.2448 ][hep-lat]

    Google Scholar 

  76. Lucini, B., Teper, M., Wenger, U.: Properties of the deconfining phase transition in SU(N) gauge theories. JHEP 0502, 033 (2005) [ArXiv:hep-lat/0502003]

    Article  MathSciNet  ADS  Google Scholar 

  77. Kiritsis, E., Nitti, F.: On massless 4D gravitons from 5D asymptotically AdS space-times. Nucl. Phys. B 772, 67 (2007) [ArXiv:hep-th/0611344]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Morningstar, C.J., Peardon, M.J.: The glueball spectrum from an anisotropic lattice study. Phys. Rev. D 60, 034509 (1999) [ArXiv:hep-lat/9901004]

    Article  ADS  Google Scholar 

  79. Chen, Y. et al.: Glueball spectrum and matrix elements on anisotropic lattices. Phys. Rev. D 73, 014516 (2006) [ArXiv:hep-lat/0510074]

    Article  ADS  Google Scholar 

  80. Lucini, B., Teper, M.: SU(N) gauge theories in four dimensions: Exploring the approach to \(\hbox{N} =\infty\). JHEP 0106, 050 (2001) [ArXiv:hep-lat/0103027]

    Article  ADS  Google Scholar 

  81. Meyer, H.B.: Glueball Regge trajectories [ArXiv:hep-lat/0508002]

    Google Scholar 

  82. Cheng, M. et al.: The spatial string tension and dimensional reduction in QCD. Phys. Rev. D 78, 034506 (2008) [ArXiv:0806.3264][hep-lat]

    Article  ADS  Google Scholar 

  83. Schroder, Y., Laine, M.: Spatial string tension revisited. PoS LAT LAT2005, 180 (2006) [ArXiv:hep-lat/0509104]

    Google Scholar 

  84. Alanen, J., Kajantie, K., Suur-Uski, V.: Spatial string tension of finite temperature QCD matter in gauge/gravity duality. Phys. Rev. D 80, 075017 (2009) [ArXiv:0905.2032][hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  85. Zeng, D.f.: Heavy quark potentials in some renormalization group revised AdS/QCD models. Phys. Rev. D 78, 126006 (2008) [ArXiv:0805.2733][hep-th]

    Article  ADS  Google Scholar 

  86. Galow, B., Megias, E., Nian, J., Pirner, H.J.: Phenomenology of AdS/QCD and its gravity dual. Nucl.Phys.B 834 330–362, (2010), [arXiv:0911.0627]

    Article  ADS  MATH  Google Scholar 

  87. Noronha, J.: Connecting polyakov loops to the thermodynamics of \(SU(N_c)\) gauge theories using the gauge–string duality. Nucl.Phys.B 834 330–362, (2010) [ArXiv:0911.0627] [hep-ph]

    Article  Google Scholar 

  88. Noronha, J.: Polyakov loops in strongly-coupled plasmas with gravity duals. J.Phys.G 37 094018, (2010) [ArXiv:1001.3155][hep-th]

    Article  ADS  Google Scholar 

  89. Del Debbio, L., Giusti, L., Pica, C.: Topological susceptibility in the SU(3) gauge theory. Phys. Rev. Lett. 94, 032003 (2005) [ArXiv:hep-th/0407052]

    Article  ADS  Google Scholar 

  90. Moore, G.D., Saremi, O.: Bulk viscosity and spectral functions in QCD. JHEP 0809, 015 (2008) [ArXiv:0805.4201][hep-ph]

    Article  ADS  Google Scholar 

  91. Springer, T.: Sound mode hydrodynamics from bulk scalar fields. Phys. Rev. D 79, 046003 (2009) [[ArXiv:arXiv:0810.4354][hep-th]]

    Article  ADS  Google Scholar 

  92. Gubser, S.S., Pufu, S.S., Rocha, F.D.: Bulk viscosity of strongly coupled plasmas with holographic duals. JHEP 0808, 085 (2008) [ArXiv:0806.0407][hep-th]

    Article  ADS  Google Scholar 

  93. Gursoy, U., Kiritsis, E., Michalogiorgakis, G., Nitti, F.: Thermal transport and drag force in improved holographic QCD. JHEP 0912, 056 (2009) [ArXiv:0906.1890][hep-ph]

    Article  ADS  Google Scholar 

  94. Arnold, P., Dogan, C., Moore, G.D.: The bulk viscosity of high-temperature QCD. Phys. Rev. D 74, 085021 (2006) [arXiv:hep-ph/0608012]

    Article  ADS  Google Scholar 

  95. Chamblin, H.A., Reall, H.S.: Dynamic dilatonic domain walls. Nucl. Phys. B 562, 133 (1999) [arXiv:hep-th/9903225]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. Buchel, A.: Bulk viscosity of gauge theory plasma at strong coupling. Phys. Lett. B 663, 286 (2008) [ArXiv:0708.3459][hep-th]

    Article  ADS  Google Scholar 

  97. Kanitscheider, I., Skenderis, K.: Universal hydrodynamics of non-conformal branes. JHEP 0904, 062 (2009) [ArXiv:0901.1487][hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  98. Song, H., Heinz, U.W.: Extracting the QGP viscosity from RHIC data—a status report from viscous hydrodynamics. J.Phys.G36 064033, (2009) [ArXiv:0812.4274][nucl-th]

    Article  ADS  Google Scholar 

  99. Yarom, A.: Notes on the bulk viscosity of holographic gauge theory plasmas, JHEP1004 024, (2010) [ArXiv:0912.2100][hep-th]

    Article  ADS  Google Scholar 

  100. Cherman, A., Cohen, T.D., Nellore, A.: A bound on the speed of sound from holography. Phys. Rev. D 80, 066003 (2009) [ArXiv:0905.0903][hep-th]

    Article  ADS  Google Scholar 

  101. Cherman, A., Nellore, A.: Universal relations of transport coefficients from holography. Phys. Rev. D 80, 066006 (2009) [ArXiv:0905.2969][hep-th]

    Article  ADS  Google Scholar 

  102. Hohler, P.M., Stephanov, M.A.: Holography and the speed of sound at high temperatures. Phys. Rev. D 80, 066002 (2009) [ArXiv:0905.0900][hep-th]

    Article  ADS  Google Scholar 

  103. Beuf, G., Marquet, C., Xiao, B.W.: Heavy-quark energy loss and thermalization in a strongly coupled SYM plasma. Phys.Rev.D80 085001, (2009) [ArXiv:0812.1051][hep-ph]

    Article  ADS  Google Scholar 

  104. Datta, S., Karsch, F., Petreczky, P., Wetzorke, I.: Behavior of charmonium systems after deconfinement. Phys. Rev. D 69, 094507 (2004) [ArXiv:hep-lat/0312037]

    Article  ADS  Google Scholar 

  105. Luzum, M., Romatschke, P.: Viscous hydrodynamic predictions for nuclear collisions at the LHC. Phys.Rev.Lett.103 262302, (2009) [ArXiv:arXiv:0901.4588][nucl-th]

    Article  ADS  Google Scholar 

  106. Herzog, C.P.: A holographic prediction of the deconfinement temperature. Phys. Rev. Lett. 98, 091601 (2007) [ArXiv:hep-th/0608151]

    Article  ADS  Google Scholar 

  107. Ballon Bayona, C.A., Boschi-Filho, H., Braga, N.R.F., Pando Zayas, L.A.: On a holographic model for confinement/deconfinement. Phys. Rev. D 77, 046002 (2008) [ArXiv:0705.1529][hep-th]

    Article  ADS  Google Scholar 

  108. Andreev, O.: Some thermodynamic aspects of pure glue, fuzzy bags and gauge/string duality. Phys. Rev. D 76, 087702 (2007) [ArXiv:0706.3120][hep-ph]

    Article  ADS  Google Scholar 

  109. Kajantie, K., Tahkokallio, T., Yee, J.T.: Thermodynamics of AdS/QCD. JHEP 0701, 019 (2007) [ArXiv:hep-ph/0609254]

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the numerous colleagues that have shared their insights with us via discussions and correspondence since 2007 that this line of research has started: O. Aharony, L. Alvarez-Gaumé, B. Bringoltz, R. Brower, M. Cacciari, J. Casalderrey-Solana, R. Emparan , F. Ferrari, B. Fiol, P. de Forcrand, R. Granier de Cassagnac, L. Giusti, S. Gubser, K. Hashimoto, T. Hertog, U. Heinz, D. K. Hong, G. Horowitz, E. Iancu, K. Intriligator, K. Kajantie, F. Karsch, D. Kharzeev, D. Kutasov, H. Liu, B. Lucini, M. Luscher, J. Mas, D. Mateos, H. B. Meyer, C. Morningstar, V. Niarchos, C. Nunez, Y. Oz, H. Panagopoulos, S. Pal, M. Panero, I. Papadimitriou, A. Paredes, A. Parnachev, G. Policastro, S. Pufu, K. Rajagopal, F.Rocha, P. Romatchke, C. Salgado, F. Sannino, M. Shifman, E. Shuryak, S. J. Sin, C. Skenderis, D. T. Son, J. Sonnenschein, S. Sugimoto, M. Taylor, M. Teper, J. Troost, A. Tseytlin, A. Vainshtein, G. Veneziano, A. Vladikas, L. Yaffe, A. Yarom and U. Wiedemann.

This work was partially supported by a European Union grant FP7-REGPOT-2008-1-CreteHEPCosmo-228644, and ANR grant NT05-1-41861. Work of LB has been partly funded by INFN, Ecole Polytechnique (UMR du CNRS 7644), MEC and FEDER under grant FPA2008-01838, by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042) and by Xunta de Galicia (Consellería de Educación and grant PGIDIT06PXIB206185PR).

E. K. thanks the organizers and especially E. Papantonopoulos for organizing a very interesting and stimulating school.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gursoy, U., Kiritsis, E., Mazzanti, L., Michalogiorgakis, G., Nitti, F. (2011). Improved Holographic QCD. In: Papantonopoulos, E. (eds) From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence. Lecture Notes in Physics, vol 828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04864-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04864-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04863-0

  • Online ISBN: 978-3-642-04864-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics