Skip to main content

Single-Electron Devices

  • Chapter
  • First Online:
CFN Lectures on Functional Nanostructures Vol. 1

Part of the book series: Lecture Notes in Physics ((LNP,volume 658))

Abstract

The electrical charge is quantized in the elementary quantum –e carried by single electrons. In mesoscopic systems at sufficiently low temperature, this discrete elementary charge can give rise to peculiar electrostatic effects. With achieving the ability of making small devices on the scale of less than few hundred nanometers, devices based on single-electron charging effects have been proposed and realized in the last 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Single Charge Tunneling, volume B 294 of NATO ASI Series, ed. by H. Grabert, M.H. Devoret (Plenum Press, New York 1992)

    Google Scholar 

  • 2. K.K Likharev: ‘Single-electron devices and their applications’. Proceedings of the IEEE 87, 606 (1999)

    Google Scholar 

  • 3. U. Meirav, E.B. Foxman: ‘Single-electron phenomena in semiconductors’. Semicond. Sci. Technol. 10, 255 (1995)

    Google Scholar 

  • 4. L.P. Kouwenhoven, Ch.M. Marcus, P.L. McEuen, S. Tarucha, R.M Westerwelt, N.S. Wingreen: ‘Electron transport in quantum dots’. In: Mesoscopic Electron Transport, ed. by L.L. Sohn et al. (Kluwer Academic Publishers, Dordrecht 1997)

    Google Scholar 

  • 5. L.P. Kouwenhoven, D.G. Austing, S. Tarucha: ‘Few-electron quantum dots’. Rep. Prog. Phys. 64, 701 (2001)

    Google Scholar 

  • 6. T. Chakraborty: Quantum Dots – A survey of the properties of artificial atoms (North-Holland, Amsterdam 1999)

    Google Scholar 

  • 7. G. Schön: ‘Single-electron tunneling’. In: Quantum Transport and Dissipation, ed. by T. Dittrich, P. Hänggi, G. Ingold, G. Kramer, B. Schön, W. Zwerger (VCH, Weinheim 1997) chapter 3

    Google Scholar 

  • 8. H. Schoeller: ‘Transport theory of interacting quantum dots’. In: Mesoscopic Electron Transport, ed. by L.L. Sohn et al.(Kluwer Academic Publishers, Dordrecht 1997)

    Google Scholar 

  • 9. T.M. Eiles, J.M. Martinis, M.H. Devoret: ‘Even-odd asymmetry of a superconductor revealed by the Coulomb blockade of Andreev reflection’. Phys. Rev. Lett. 70, 1862 (1993)

    Google Scholar 

  • 10. M. Tinkham: Introduction to Superconductivity (McGraw-Hill, New York 1996)

    Google Scholar 

  • 11. E.V. Sukhorukov, D. Loss: ‘Spintronics and spin-based qubits in quantum dots’. phys. stat. sol. 224, 855 (2001)

    Google Scholar 

  • 12. Y. Makhlin, G. Schön, A. Shnirman: ‘Quantum-state engineering with josephson-junction devices’. Rev. Mod. Phys. 73, 357 (2001)

    Google Scholar 

  • 13. D.V. Averin, K.K. Likharev: ‘Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions’. J. Low Temp. Phys. 62, 345 (1986)

    Google Scholar 

  • 14. K.K. Likharev: ‘Single-electron transistors: Electrostatic analogs of the DC SQUIDS’. IEEE Transactions on Magnetics 23, 1142 (1987)

    Google Scholar 

  • 15. D.A. Averin, A.N. Korotkov, K.K. Likharev: ‘Theory of single-electron charging of quantum wells and dots’. Phys. Rev. B 44, 6199 (1991)

    Google Scholar 

  • 16. T.A. Fulton, G.D. Dolan: ‘Observation of single-electron charging effects in small tunnel junctions’. Phys. Rev. Lett. 59, 109 (1987)

    Google Scholar 

  • 17. L.D. Hallam, J. Weis, P.A. Maksym: ‘Screening of the electron-electron interaction by gate electrodes in semiconductor quantum dots’. Phys. Rev. B 53, 1452 (1996)

    Google Scholar 

  • 18. D. Pfannkuche, S.E. Ulloa: ‘Selection rules for spectroscopy of quantum dots’. Advances in Solid State Physics 35, 65 (1996)

    Google Scholar 

  • 19. M. Kastner: ‘Artificial atoms’. Phys. Today 46, 24 (1993)

    Article  Google Scholar 

  • 20. R.C. Ashoori: ‘Electrons in artifical atoms’. Nature 379, 413 (1996)

    Google Scholar 

  • 21. C.W.J. Beenakker: ‘Theory of Coulomb-blockade oscillations in the conductance of a quantum dot’. Phys. Rev. B 44, 1646 (1991)

    Google Scholar 

  • 22. S.M. Reimann, M. Manninen: ‘Electronic structure of quantum dots’. Rev. Mod. Phys. 74, 1283 (2002)

    Article  Google Scholar 

  • 23. J. Weis, R.J. Haug, K. v. Klitzing, K. Ploog: ‘Transport spectroscopy of a single quantum dot’. Semicond. Sci. Technol. 9, 1890 (1994)

    Google Scholar 

  • 24. J. Weis, R.J. Haug, K. v. Klitzing, K. Ploog: ‘Competing channels in single-electron tunneling through a quantum dot’. Phys. Rev. Lett. 71, 4019 (1993)

    Google Scholar 

  • 25. A.T. Johnson, L.P Kouwenhoven, W. de Jong, N.C. van der Vaart, C.J.P.M. Harmans, C.T. Foxon: ‘Zero-dimensional states and single electron charging in quantum dots’. Phys. Rev. Lett. 69, 1592 (1992)

    Google Scholar 

  • 26. E.B. Foxman, P.L. McEuen, N.S. Wingreen, Y. Meir, P.A. Belk, N.R. Belk, M.A. Kastner: ‘Effects of quantum levels on transport through a Coulomb island’. Phys. Rev. B 47, 10020 (1993).

    Google Scholar 

  • 27. J.M. Kinaret, Y. Meir, N.S. Wingreen, P. Lee, X.-G. Wen: ‘Conductance through a quantum dot in the fractional quantum Hall regime’. Phys. Rev. B 45, 9489 (1992)

    Google Scholar 

  • 28. D. Weinmann, W. Häusler, B. Kramer: ‘Spin blockades in linear and nonlinear transport through quantum dots’. Phys. Rev. Lett. 74, 984 (1995)

    Google Scholar 

  • 29. J.J. Palacios, L. Martin-Moreno, C. Tejedor: ‘Magnetotunneling through quantum boxes in a strong-correlation regime’. Europhys. Letters 23, 495 (1993)

    Google Scholar 

  • 30. D. Pfannkuche, S.E. Ulloa: ‘Selection rules for transport excitation spectroscopy of few-electron quantum dots’. Phys. Rev. Lett. 74, 1194 (1995)

    Google Scholar 

  • 31. K. Jauregui, W. Häusler, D. Weinmann, B. Kramer: ‘Signatures of electron correlations in the transport properties of quantum dots’. Phys. Rev. B 53, 1713 (1996)

    Google Scholar 

  • 32. G. Zimmerli, R.L. Kautz, J.M. Martinis: ‘Voltage gain in the single-electron transistor’. Appl. Phys. Lett. 61, 2616 (1992)

    Article  Google Scholar 

  • 33. P. Lafarge, H. Pothier, E.R. Williams, D. Esteve, C. Urbina, M.H. Devoret: ‘Direct observation of macroscopic charge quantization’. Z. Phys. B 85, 327 (1991)

    Google Scholar 

  • 34. V.A. Krupenin, D.E. Presnov, A.B. Zorin, M.N. Niemeyer: ‘Aluminum single electron transistors with islands isolated from the substrate’. J. Low Temp. Phys. 118, 287 (2000)

    Google Scholar 

  • 35. R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober: ‘The radio-frequency single-electron transistor (rf-SET): A fast and ultrasensitive electrometer’. Science 280, 1238 (1998)

    Google Scholar 

  • 36. Y.Y. Wei, J. Weis, K. von Klitzing, K. Eberl: ‘Single-electron transistor as an electrometer measuring chemical potential variations’. Appl. Phys. Lett. 71, 2514 (1997)

    Google Scholar 

  • 37. M.J. Yoo, T.A. Fulton, H.F. Hess, R.L. Willett, L.N. Dunkelberger, R.J. Chichester, L.N. Pfeiffer, K.W. West: ‘Scanning single-electron transistor microscopy: Imaging individual charges’. Science 276, 579 (1997)

    Google Scholar 

  • 38. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe: ‘Kelvin probe force microscopy’. Appl. Phys. Lett. 58, 2921 (1991)

    Article  Google Scholar 

  • 39. J. Weis, R.J. Haug, K. von Klitzing, K. Ploog: ‘Single-electron tunneling transistor as a current rectifier with potential-controlled current polarity’. Semicond. Sci. Technol. 10, 877 (1995)

    Google Scholar 

  • 40. A.N. Korotkov, R.H. Chen, K.K. Likharev: ‘Possible performance of capacitively coupled single-electron transistors in digital circuits’. J. Appl. Phys. 78, 2520 (1995)

    Google Scholar 

  • 41. J. Weis: Electrical Transport Through Quantum Dot Systems. Habilitationsschrift, Universität Stuttgart, Stuttgart, Germany 2002

    Google Scholar 

  • 42. A.W. Lo: ‘Some thoughts on digital components and circuit techniques’. IRE Trans. on Electronic Computers 10, 416 (1961)

    Google Scholar 

  • 43. J.R. Tucker: ‘Complementary digital logic based on the ”Coulomb blockade”’. J. Appl. Phys. 72, 4399 (1992)

    Google Scholar 

  • 44. L. Kouwenhoven: ‘Coupled Quantum Dots as Artifical Molecules’. Science 268, 1440 (1995)

    Google Scholar 

  • 45. R.H. Blick, D. Pfannkuche, R.J. Haug, K. von Klitzing, K. Eberl: ‘Formation of a Coherent Mode in a Double Quantum Dot’. Phys. Rev. Lett. 80, 4032 (1998)

    Google Scholar 

  • 46. L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, A. van den Enden, C.J.P.M. Harmans, C.T. Foxon.: ‘Quantized current in a quantum dot turnstile’. Z. Phys. B 85, 381 (1991)

    Google Scholar 

  • 47. H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M.H. Devoret: ‘Single-Electron Pump Based on Charging Effects’. Europhysics Letters 17, 249 (1992)

    Google Scholar 

  • 48. R.L. Kautz, M.W. Keller, J.M. Martinis: ‘Leakage and counting errors in a seven-junction electron pump’. Phys. Rev. B 60, 8199 (1999)

    Google Scholar 

  • 49. V.I. Talyanskii, J.M. Shilton, M. Pepper, C.J.B. Ford, E.H. Linfield, D.A. Ritchie, G.A.C. Jones: ‘Single-Electron transport in a one-dimensional channel by Radio Frequencies’. Phys. Rev. B 56, 15180 (1997)

    Google Scholar 

  • 50. J. Ebbecke, G. Bastian, M. Blöcker, K. Pierz, F.J. Ahlers: ‘Enhanced quantized current driven by surface acoustic waves’. Appl. Phys. Lett. 77, 2601 (2000)

    Google Scholar 

  • 51. A. Erbe, C. Weiss, W. Zwerger, R.H. Blick: ‘Nanomechanical Resonator Shuttling Single Electrons at Radio Frequencies’. Phys. Rev. Lett. 87, 096106 (2001)

    Google Scholar 

  • 52. J.P. Pekola, K.P. Hirvi, J.P. Kauppinen, M.A. Paalanen: ‘Thermometry by arrays of tunnel-junctions’. Phys. Rev. Lett. 73, 2903 (1994)

    Article  Google Scholar 

  • 53. J.P. Pekola, L.J. Taskinen, Sh. Farhangfar: ‘One- and two-dimensional tunnel junction arrays in weak Coulomb blockade regime: Absolute accuracy in thermometry’. Appl. Phys. Lett. 76, 3747 (2000)

    Google Scholar 

  • 54. D. Weinmann, W. Häusler, B. Kramer: ‘Transport properties of quantum dots’. Ann. Physik 5, 652 (1996).

    Google Scholar 

  • 55. D.V. Averin, Y.V. Nazarov: ‘Macroscopic quantum tunneling of charge and co-tunneling’. In: Single Charge Tunneling, volume B 294 of NATO ASI Series, ed. by H. Grabert, M.H. Devoret (Plenum Press, New York, 1992) pp. 217–247

    Google Scholar 

  • 56. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner: ‘Kondo effect in a single-electron transistor’. Nature 391, 156 (1998)

    Google Scholar 

  • 57. S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven: ‘A tunable Kondo effect in quantum dots’. Science 281, 540 (1998)

    Google Scholar 

  • 58. J. Schmid, J. Weis, K. Eberl, K. von Klitzing: ‘A quantum dot in the limit of strong coupling to reservoirs’. Physica B 256, 182 (1998)

    Google Scholar 

  • 59. J. Schmid, J. Weis, K. Eberl, K. von Klitzing: ‘Absence of odd-even parity behaviour for Kondo resonances in quantum dots’. Phys. Rev. Lett. 84, 5824 (2000)

    Google Scholar 

  • 60. W.G. van der Wiel, S. De Franceschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven: ‘The Kondo effect in the unitary limit’. Science 289, 210 (2000)

    Google Scholar 

  • 61. L.I. Glazman, M.É. Raikh: ‘Resonant Kondo transparency of a barrier with quasilocal impurity states’. JETP Lett. 47, 453 (1988)

    Google Scholar 

  • 62. T.K. Ng, P.A. Lee: ‘On-site Coulomb repulsion and resonant tunneling’. Phys. Rev. Lett. 61, 1768 (1988)

    Google Scholar 

  • 63. P.W. Anderson: ‘Localized magnetic states in metals’. Phys. Rev. 124, 41 (1961)

    Google Scholar 

  • 64. S. Sasaki, S. De Franceschi, J.M. Elzerman, W.G. van der Wiel, M. Eto, S. Tarucha, L.P. Kouwenhoven: ‘Kondo effect in an integer-spin quantum dot’. Nature 405, 764 (2000)

    Google Scholar 

  • 65. M. Keller, U. Wilhelm, J. Schmid, J. Weis, K. von Klitzing, K. Eberl: ‘Quantum dot in high magnetic fields: Correlated tunneling of electrons probes the spin configuration at the edge of the dot’. Phys. Rev. B 64, 033302 (2001)

    Google Scholar 

  • 66. U. Wilhelm, J. Schmid, J. Weis, K. von Klitzing: ‘Two electrostatically coupled quantum dots as a realization of the Anderson impurity model’. Physica E 9, 625 (2001)

    Google Scholar 

  • 67. U. Wilhelm, J. Schmid, J. Weis, K. von Klitzing: ‘Experimental evidence for spinless Kondo effect in two electrostatically coupled quantum dot systems’. Physica E 14, 385 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weis, J. (2005). Single-Electron Devices. In: Busch, K., Powell, A., Röthig, C., Schön, G., Weissmüller, J. (eds) CFN Lectures on Functional Nanostructures Vol. 1. Lecture Notes in Physics, vol 658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31533-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31533-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22929-2

  • Online ISBN: 978-3-540-31533-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics