Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-16T21:46:59.028Z Has data issue: false hasContentIssue false

Hermitian operators and isometries on sums of Banach spaces

Published online by Cambridge University Press:  20 January 2009

R. J. Fleming
Affiliation:
Department of Mathematics, Central Michigan University, Mount Pleasant, Michigan, U.S.A.
J. E. Jamison
Affiliation:
Department of Mathematics, Memphis State University, Memphis, TN. 38152, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let E be a Banach sequence space with the property that if (αi) ∈ E and |βi|≦|αi| for all i then (βi) ∈ E and ‖(βi)‖E≦‖(αi)‖E. For example E could be co, lp or some Orlicz sequence space. If (Xn) is a sequence of real or complex Banach spaces, then E can be used to construct a vector sequence space which we will call the E sum of the Xn's and symbolize by ⊕EXn. Specifically, ⊕EXn = {(xn)|(xn)∈Xn and (‖xn‖)∈E}. The E sum is a Banach space with norm defined by: ‖(xn)‖ = ‖(‖xn‖)‖E. This type of space has long been the source of examples and counter-examples in the geometric theory of Banach spaces. For instance, Day [7] used E=lp and Xk=lqk, with appropriate choice of qk, to give an example of a reflexive Banach space not isomorphic to any uniformly conves Banach space. Recently VanDulst and Devalk [33] have considered Orlicz sums of Banach spaces in their studies of Kadec-Klee property.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1989

References

REFERENCES

1.Arazy, J., Isometries of complex symmetric sequences spaces, Math. Z. 188 (1985), 317321.CrossRefGoogle Scholar
2.Banach, S., Theorie des operations lineaires (Chelsea, New York, 1955).Google Scholar
3.Behrends, E. et al. , Lp structure in real Banach spaces (Springer Lecture Notes in Math. 613, (1977).CrossRefGoogle Scholar
4.Behrends, E., M-structure and the Banach Stone theorem (Springer Lecture Notes in Math. 736, (1979).CrossRefGoogle Scholar
5.Berkson, E. and Sourour, A., The hermitian operators on some Banach spaces, Studia Math. 52 (1974), 3341.Google Scholar
6.Borwein, D., Linear functionals connected with strong Cesaro summability, J. London Math. Soc. 40 (1965), 628634.CrossRefGoogle Scholar
7.Day, M. M., Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313317.CrossRefGoogle Scholar
8.Fleming, R. J. and Jamison, J. E., Hermitian and adjoint abelian operators on certain Banach spaces, Pacific J. Math. 52 (1974), 6784.CrossRefGoogle Scholar
9.Fleming, R. J. and Jamison, J. E., Isometries on certain Banach spaces, J. London Math. Soc. 9 (1975), 121127.Google Scholar
10.Fleming, R. J. and Jamison, J. E., Adjoint abelian operators on Lp on C(K), Trans. Amer. Math. Soc. 217 (1976), 8798.Google Scholar
11.Fleming, R. J. and Jamison, J. E., Classes of operators on vector valued integration spaces, J. Austral. Math. Soc. Ser. A 24 (1977), 128129.Google Scholar
12.Fleming, R. J. and Jamison, J. E., The Isometries of Sp(α), Canad. J. Math. 33 (1981), 5967.CrossRefGoogle Scholar
13.Fleming, R. J. and Jamison, J. E., Hermitian operators on C(X,E) and the Banach-Stone theorem, Math. Z. 170 (1980), 7784.CrossRefGoogle Scholar
14.Fleming, R. J., Goldstein, Jerome and Jamison, J. E., One parameter groups of Isometries on certain Banach Spaces, Pacific J. Math. 64 (1976), 145151.CrossRefGoogle Scholar
15.Greim, P., Isometries and Lp-structure of separably valued Lp-spaces, in: Measure Theory and Its Applications, Proc. Conf. Sherbrooke 1982 (Springer Lecture Notes in Math. 1033, Berlin, Heidelberg, New York, 1983), 209218.CrossRefGoogle Scholar
16.Greim, P., Hilbert spaces have the Banach-Stone property for Bochner spaces, Bull. Austral. Math. Soc. 27 (1983), 121128.CrossRefGoogle Scholar
17.Jakimovski, A. and Russell, D. C., Representation of continuous linear functionals on a subspace of a continuous linear functionals on a subspace of a countable cartesian product of Banach spaces, Studia Math. 72 (1982), 274284.Google Scholar
18.Jamison, J., Loomis, Irene and Rousseau, C. C., Complex convexity of certain Banach spaces, MH. Math. 99 (1985), 199211.Google Scholar
19.Laduke, J., On a certain Generalization of lp spaces, Pacific J. Math. 35 (1970), 155168.CrossRefGoogle Scholar
20.Lamperti, J., On Isometries of certain function spaces, Pacific J. Math. 2 (1985), 459466.Google Scholar
21.Lumer, G., Semi inner product spaces, Trans. Amer. Math. Soc. 100 (1961), 2943.CrossRefGoogle Scholar
22.Lumer, G., On the Isometries of reflexive Orlicz spaces, Ann. Inst. Fourier (Grenoble) 13 (1963), 99109.Google Scholar
23.Mattila, K., Complex strict and uniform convexity and hyponormal operators, Math. Proc. Cambridge, Philos. Soc. 96 (1984), 483493.CrossRefGoogle Scholar
24.Partington, J. R., Hermitian operators for absolute norms and absolute direct sums, Linear Algebra Appl. 23 (1979), 275280.CrossRefGoogle Scholar
25.Paya'-Albert, R., Numerical range of operators and structure of Banach Spaces, Quart. J. Math. Oxford (2), 33 (1982), 357.Google Scholar
26.Rosenthal, H., Functional Hilbert sums, (1985), preprint.Google Scholar
27.Rosenthal, H., The Lie algebra of Banach space, (1985), preprint.CrossRefGoogle Scholar
28.Schneider, H. and Turner, R. E. L., matrices hermitian for an absolute norm, Linear and Multilinear Algebra 1 (1973), 932.CrossRefGoogle Scholar
29.Sinclair, A. M., Jordan homomorphism and derivations on semi simple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209214.Google Scholar
30.Sourour, A. R., Isometries of Lp(μ,X), J. Fund. Anal. 30 (1978), 276285.CrossRefGoogle Scholar
31.Sourour, A. R., Isometries of norm ideals of compact operators, J. Funt. Anal. 43 (1981), 6977.CrossRefGoogle Scholar
32.Stampfli, J. G., Adjoint abelian operators on Banach space, Canad. J. Math. 21 (1969), 505512.Google Scholar
33.Van Dulst, D. and Devalk, V., (KK)–Properties, Normal Structure and fixed points on nonexpansive mappings in Orlicz sequence spaces, Canad. J. Math. 38 (1986), 728750.Google Scholar