Skip to main content

Abstract

Several sulfur amino acids and sulfur compounds are found in mammalian tissues. While some find their origin in the diet, other sulfur amino acids are formed in vivo from methionine in the tissues. Thus it is known that methionine is converted into homocysteine, cystathionine, cysteine, hypotaurine, and taurine. These metabolites are formed in the course of transferring a methyl group to other compounds. The mechanism of demethylation and the subsequent metabolism of the demethylated product, homocysteine, is now well established. The enzyme systems in most cases were first studied in liver preparations. The demonstration that 35S-methionine is converted into 35S-cysteine and 35S-taurine by rat brain in vitro and in vivo gave evidence that the sulfur amino acids are metabolized also in the mammalian brain. Several subsequent studies have shown similarities between the metabolism of methionine in liver and in brain, but they have also revealed some characteristic differences in the metabolism of sulfur amino acids in the brain: (1) the cystathionine and taurine concentrations are much higher in the brain than in the liver, (2) the enzyme cysteine sulfinic acid decarboxylase is predominantly a particulate deaminated to form isethionic acid by rat brain and heart and not by liver. An interesting feature of sulfur amino acid metabolism is that many of the enzyme systems involved in the conversion of methionine into its several metabolites require pyridoxal phosphate (vitamin B6) asacofactor. Whereas in liver this cofactor is tightly bound to some of these enzymes, the corresponding enzymes in the brain are bound loosely to this cofactor, and their activity in the brain can be demonstrated in vitro only by adding the cofactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. du Vigneaud, A Trail of Research in Sulfur Chemistry and Metabolism and Related Fields, Cornell University Press, Ithaca (1952).

    Google Scholar 

  2. C. Fromageot, in The Harvey Lectures, Vol. 49, pp. 1–36, Academic Press, New York (1955).

    Google Scholar 

  3. J. A. Stekol, in A Symposium on Amino Acid Metabolism (W. D. McElroy and H. B. Glass, eds.), pp. 509–557, The Johns Hopkins Press, Baltimore (1955).

    Google Scholar 

  4. T. P. Singer and E. B. Kearney, in A Symposium on Amino Acid Metabolism (W. D. McElroy and H. B. Glass, eds.), pp. 558–590, The Johns Hopkins Press, Baltimore (1955).

    Google Scholar 

  5. L. Young and G. A. Maw, The Metabolism of Sulphur Compounds, Methuen, London (1958).

    Google Scholar 

  6. D. D. Dziewiatkowski, in Mineral Metabolism (C. L. Comar and F. Bronner, eds.), Vol. 2, Pt. B, pp. 175–220, Academic Press, New York (1962).

    Google Scholar 

  7. A. Meister, Biochemistry of the Amino Acids, Vol. 2, pp. 757–818, Academic Press, New York (1965).

    Google Scholar 

  8. S. K. Shapiro and F. Schlenk (eds.), Transmethylation and Methionine Biosynthesis, University of Chicago Press, Chicago (1965).

    Google Scholar 

  9. J. G. Jacobsen and L. H. Smith, Jr., Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev. 48:424–511 (1968).

    PubMed  CAS  Google Scholar 

  10. P. Berg, Participation of adenyl-acetate in the acetate-activating system, J. Am. Chem. Soc. 77:3163–3164 (1955).

    Article  CAS  Google Scholar 

  11. M. B. Hoagland, E. B. Keller, and P. C. Zamecnick, Enzymatic carboxyl activation of amino acids, J. Biol. Chem. 218:345–358 (1956).

    PubMed  CAS  Google Scholar 

  12. M. B. Hoagland, M. L. Stephenson, J. F. Scott, L. I. Hecht, and P. C. Zamecnik, A soluble ribonucleic acid intermediate in protein synthesis, J. Biol. Chem. 231:241–257 (1958).

    PubMed  CAS  Google Scholar 

  13. H. Borsook, On the role of the oxidation in the methylation of guanidoacetic acid, J. Biol. Chem. 171:363–375 (1947).

    CAS  Google Scholar 

  14. G. L. Cantoni, Methylation of nicotinamide with a soluble enzyme system from rat liver, J.Biol. Chem. 189:203–216 (1951).

    PubMed  CAS  Google Scholar 

  15. G. L. Cantoni, Activation of methionine for transmethylation, J.Biol. Chem. 189:745–755 (1951).

    PubMed  CAS  Google Scholar 

  16. G. L. Cantoni, S-Adenosylmethionine: A new intermediate formed enzymatically from L-methionine and adenosinetriphosphate, J. Biol. Chem. 204:403–416 (1953).

    CAS  Google Scholar 

  17. G. L. Cantoni and J. Durell, Activation of methionine for transmethylation, J. Biol. Chem. 225:1033–1048 (1957).

    PubMed  CAS  Google Scholar 

  18. G. L. Cantoni and E. Scarano, The formation of S-adenosylhomocysteine in enzymatic transmethylation reactions, J. Am. Chem. Soc. 76:4744 (1954).

    Article  CAS  Google Scholar 

  19. G. L. Cantoni, The nature of the active methyl donor formed enzymatically from L-methionine and adenosinetriphosphate, J. Am. Chem. Soc. 74:2942–2943 (1952).

    Article  CAS  Google Scholar 

  20. G. L. Cantoni and P. J. Vignos, Jr., Enzymatic mechanism of creatine synthesis, J. Biol. Chem. 209:647–659 (1954).

    PubMed  CAS  Google Scholar 

  21. G. A. Maw, Thetin-homocysteine transmethylase, Biochem. J. 63:116–124 (1956).

    PubMed  CAS  Google Scholar 

  22. S. H. Mudd, J. D. Finkelstein, F. Irreverre, and L. Laster, Transsulfuration in mammals, J. Biol Chem. 240:4382–4392 (1965).

    PubMed  CAS  Google Scholar 

  23. R. J. Baldessarini and I. J. Kopin, S-Adenosylmethionine in brain and other tissues, J. Neurochem. 13:769–777 (1966).

    Article  PubMed  CAS  Google Scholar 

  24. Y. Natori, Studies on ethionine, J. Biol Chem. 238:2075–2080 (1963).

    PubMed  CAS  Google Scholar 

  25. S. H. Mudd, J. D. Finkelstein, F. Irreverre, and L. Laster, Homocystinuria: An enzymatic defect, Science 143:1443–1445 (1964).

    Article  PubMed  CAS  Google Scholar 

  26. J. D. Finkelstein, S. H. Mudd, and L. Laster, Homocystinuria due to cystathionine synthetase deficiency: The mode of inheritance, Science 146:785–787 (1964).

    Article  PubMed  CAS  Google Scholar 

  27. E. Borek and H. Waelsch, Metabolism of methionine and its derivatives with tissue slices, J. Biol. Chem. 141:99–103 (1941).

    CAS  Google Scholar 

  28. E. S. Canellakis and H. Tarver, Studies on protein synthesis in vitro. IV. Concerning apparent uptake of methionine by particulate preparation from liver, Arch. Biochem. Biophys. 42:387–398 (1953).

    Article  PubMed  CAS  Google Scholar 

  29. H. Waelsch, The excretion of keto acids, J. Biol. Chem. 140:313–314 (1941).

    CAS  Google Scholar 

  30. J. Lemann, Jr., and A. S. Relman, The relation of sulfur metabolism to acid-base balance and electrolyte excretion: The effects of DL-methionine in normal man, J. Clin. Invest. 38:2215–2223 (1959).

    Article  PubMed  Google Scholar 

  31. H. Waelsch and E. Borek, The stability of the keto acid from methionine, J. Am. Chem. Soc. 61:2252(1939).

    Article  CAS  Google Scholar 

  32. E. S. Canellakis and H. Tarver, The metabolism of methyl mercaptan in the intact animal, Arch. Biochem. Biophys. 42:446–455 (1953).

    Article  PubMed  CAS  Google Scholar 

  33. E. V. Rowsell, Transamination to pyruvate and some other α-keto-acids, Nature 168:104–106 (1951).

    Article  PubMed  CAS  Google Scholar 

  34. F. Challenger and J. M. Walshe, Methyl mercaptan in relation to foetor hepaticus, Biochem. J. 59:372–375 (1955).

    PubMed  CAS  Google Scholar 

  35. J. W. Dubnoff, The role of choline oxidase in labilizing choline methyl, Arch. Biochem. 24:251–262 (1949).

    PubMed  CAS  Google Scholar 

  36. V. du Vigneaud, A. W. Moyer, and J. P. Chandler, Dimethylthetin as a biological methyl donor, J. Biol. Chem. 174:477–480 (1948).

    Google Scholar 

  37. J. W. Dubnoff and H. Borsook, Dimethylthetin and dimethyl-β-propiothetin in methionine synthesis, J. Biol Chem. 176:789–796 (1948).

    PubMed  CAS  Google Scholar 

  38. L. E. Ericson, J. N. Williams, Jr., and C. A. Elvehjem, Studies on partially purified betaine-homocysteine transmethylase of liver, J. Biol. Chem. 212:537–544 (1955).

    PubMed  CAS  Google Scholar 

  39. D. P. Brenton, D. C. Cusworth, and G. E. Gaull, Homocystinuria, Pediatrics 35: 50–56 (1965).

    PubMed  CAS  Google Scholar 

  40. P. J. G. Mann, H. E. Woodward, and J. H. Quastel, Hepatic oxidation of choline and arsenocholine, Biochem. J. 32:1024–1032 (1938).

    PubMed  CAS  Google Scholar 

  41. J. A. Muntz, The inability of choline to transfer a methyl group directly to homocysteine for methionine formation, J.Biol. Chem. 182:489–499 (1950).

    CAS  Google Scholar 

  42. J. W. Dubnoff, Utilization of choline and betaine methyl in the guinea pig, Arch. Biochem. Biophys. 22:474–475 (1949).

    CAS  Google Scholar 

  43. J. W. Dubnoff, Sulfocholine in methionine synthesis, Arch. Biochem. Biophys. 22: 478–480 (1949).

    CAS  Google Scholar 

  44. P. Berg, A study of formate utilization in pigeon liver extract, J.Biol Chem. 205: 145–162 (1953).

    PubMed  CAS  Google Scholar 

  45. W. Wilmanns, B. Rücker, and L. Jeanicke, Zur Biogenese von Methionin, Hoppe-Seylers Z. Physiol Chem. 322:283–287 (1960).

    Article  PubMed  CAS  Google Scholar 

  46. W. Sakami and I. Ukstins, Enzymatic methylation of homocysteine by a synthetic tetrahydrofolate derivative, J. Biol. Chem. 236:PC 50 (1961).

    Google Scholar 

  47. K. O. Donaldson and J. C. Keresztesy, Further evidence on the nature of prefolic A, Biochem. Biophys. Res. Commun. 5:289–292 (1961).

    Article  PubMed  CAS  Google Scholar 

  48. J. H. Mangum and K. G. Scrimgeour, Cofactor requirements and intermediates in methionine biosynthesis, Federation Proc. 21:242 (1962).

    Google Scholar 

  49. A. Nakao and D. M. Greenberg, Co-factor requirements for the incorporation of H2 14CO and serine-3–14C into methionine, J. Am. Chem. Soc. 77:6715–6716 (1955).

    Article  CAS  Google Scholar 

  50. V. M. Doctor, T. L. Patton, and J. Awapara, Incorporation of serine-3–14C and formaldehyde-14C into methionine in vitro. I. Role of folic acid, Arch. Biochem. Biophys. 67:404–409 (1957).

    Article  PubMed  CAS  Google Scholar 

  51. K. Přistoupilová, Biosynthesis of methionine in the liver of leukaemic mice, Neoplasma 14:353–358 (1967).

    PubMed  Google Scholar 

  52. H. R. V. Arnstein and A. Neuberger, The effect of cobalamin on the quantitative utilization of serine, glycine and formate for the synthesis of choline and methyl groups of methionine, Biochem. J. 55:259–271 (1953).

    PubMed  CAS  Google Scholar 

  53. A. Nakao and D. M. Greenberg, Studies on the incorporation of isotope from formaldehyde-14C and serine-3–14C into the methyl group of methionine, J. Biol. Chem. 230:603–620 (1958).

    PubMed  CAS  Google Scholar 

  54. R. L. Blakley, The interconversion of serine and glycine: Role of pteroylglutamic acid and other cofactors, Biochem. J. 58:448–462 (1954).

    PubMed  CAS  Google Scholar 

  55. L. Jaenicke, Conversion of β-carbon of serine to N10-formyltetrahydrofolic acid, Federation Proc. 15:281 (1956).

    Google Scholar 

  56. R. L. Kisliuk, Mechanism of formaldehyde incorporation into serine Federation Proc. 15:289(1956).

    Google Scholar 

  57. R. L. Blakley, The reactive intermediate formed by formaldehyde and tetrahydrop-teroyl glutamate, Biochem. Biophys. Acta 23:654–655 (1957).

    Article  CAS  Google Scholar 

  58. A. Stevens and W. Sakami, Biosynthesis of methionine in liver, J. Biol. Chem. 234: 2063–2072 (1959).

    PubMed  CAS  Google Scholar 

  59. A. R. Larrabee and J. M. Buchanan, A new intermediate of methionine biosynthesis,

    Google Scholar 

  60. Federation Proc. 20:9 (1961).

    Google Scholar 

  61. A. R. Larrabee, S. Rosenthal, R. E. Cathou, and J. M. Buchanan, A methylated derivative of tetrahydrofolate as an intermediate of methionine biosynthesis, J. Am. Chem. Soc. 83:4094–4095 (1961).

    Article  CAS  Google Scholar 

  62. K. Lindstrand, Isolation of methylcobalamin from liver, Acta Chem. Scand. 19:1785–1787 (1965).

    Article  CAS  Google Scholar 

  63. V. Herbert, A. R. Larrabee, and J. M. Buchanan, Studies on the identification of a folate compound of human serum, J. Clin. Invest 41:1134–1138 (1962).

    Article  PubMed  CAS  Google Scholar 

  64. S. Rosenthal and J. M. Buchanan, Enzymatic Synthesis of the methyl group of methionine, Acta Chem. Scand. 17:S-288–S-294 (1963).

    Article  Google Scholar 

  65. H. M. Katzen and J. M. Buchanan, Enzymatic synthesis of the methyl group of methionine, J. Biol. Chem. 240:825–835 (1965).

    PubMed  CAS  Google Scholar 

  66. H. Weissbach, A. Peterkofsky, B. G. Redfield, and H. Dickerman, Studies on the terminal reaction in the biosynthesis of methionine, J. Biol. Chem. 238:3318–3324 (1963).

    PubMed  CAS  Google Scholar 

  67. M. A. Foster, M. J. Dilworth, and D. D. Woods, Cobalamin and the synthesis of Methionine by Escherichia Coli, Nature 201:39–42 (1964).

    CAS  Google Scholar 

  68. S. S. Kerwar, J. H. Mangum, K. T. Scrimgeour, J. D. Brodie, and F. M. Huennekens, Interrelationship of adenosyl methionine and methyl-B12 in the biosynthesis of methionine, Arch. Biochem. Biophys. 116:305–318 (1966).

    Article  PubMed  CAS  Google Scholar 

  69. R. T. Taylor and H. Weissbach, Role of S-adenosylmethionine in vitamin Independent methionine synthesis, J. Biol. Chem. 241:3641–3642 (1966).

    PubMed  CAS  Google Scholar 

  70. R. T. Taylor and H. Weissbach, N5-methyltetrahydrofolate-homocysteine trans-methylase, J. Biol. Chem. 242:1517–1521 (1967).

    PubMed  CAS  Google Scholar 

  71. R. T. Taylor and H. Weissbach, Escherichia Coli B N5-methyltetrahydrofolate-homocysteine vitamin-B12 transmethylase: Formation and photolability of a methylcobalamin enzyme, Arch. Biochem. Biophys. 123:109–126 (1968).

    Article  PubMed  CAS  Google Scholar 

  72. S. Rosenthal, L. C. Smith, and J. M. Buchanan, Enzymatic synthesis of the methyl group of methionine, J. Biol. Chem. 240:836–843 (1965).

    PubMed  CAS  Google Scholar 

  73. R. T. Taylor and H. Weissbach, N5-Methyltetrahydrofolate-homocysteine transmethylase, J. Biol Chem. 242:1502–1508 (1967).

    PubMed  CAS  Google Scholar 

  74. V. Herbert and R. Zalusky, Selective concentration of folic acid activity in cerebrospinal fluid, Federation Proc. 20:453 (1961).

    Google Scholar 

  75. E. H. Reynolds, Epilepsy and schizophrenia, Lancet 1:398–401 (1968).

    Article  PubMed  CAS  Google Scholar 

  76. P. E. Schurr, H. T. Thompson, L. M. Henderson, and C. A. Elvehjem, A method for the determination of free amino acids in rat organs and tissues, J. Biol. Chem. 182:29–37 (1950).

    CAS  Google Scholar 

  77. P. E. Schurr, H. T. Thompson, L. M. Henderson, J. N. Williams, Jr., and C. A. Elvehjem, The determination of free amino acids in rat tissues, J. Biol. Chem. 182:39–45 (1950).

    CAS  Google Scholar 

  78. D. M. Walker, The free amino-acids occurring in the body tissues and blood of the rat and of the cow, Biochem. J. 52:679–683 (1952).

    PubMed  CAS  Google Scholar 

  79. M. K. Gaitonde and G. E. Gaull, A procedure for the quantitative analysis of the sulfur amino acids of rat tissues, Biochem. J. 102:959–975 (1967).

    PubMed  CAS  Google Scholar 

  80. G. E. Gaull and M. K. Gaitonde, A study of the sulfur amino acids of rat tissues, Biochem. J. 102:294–303 (1967).

    PubMed  CAS  Google Scholar 

  81. H. H. Tallan, in Amino Acid Pools (J. T. Holden, ed.), pp. 465–470, Elsevier, Amsterdam (1962).

    Google Scholar 

  82. P. Mandel and J. Mark, The influence of nitrogen deprivation on free amino acids in rat brain, J. Neurochem. 12:987–992 (1965).

    Article  PubMed  CAS  Google Scholar 

  83. H. C. Agrawal, J. M. Davies, and W. A. Himwich, Postnatal changes in free amino acid pool of rat brain, J. Neurochem. 13:607–615 (1966).

    Article  PubMed  CAS  Google Scholar 

  84. E. V. Flock, G. M. Tyce, and C. A. Owen, Jr., Utilization of glucose-U-14C in brain after total hepatectomy in the rat, J. Neurochem. 13:1389–1406 (1966).

    Article  PubMed  CAS  Google Scholar 

  85. M. J. Carver, J. H. Copenhaver, and R. A. Serpan, Free amino acids in foetal rat brain, J. Neurochem. 12:857–861 (1965).

    Article  PubMed  CAS  Google Scholar 

  86. H. H. Tallan, S. Moore, and W. H. Stein, Studies on the free amino acids and related compounds in the tissues of the cat, J. Biol. Chem. 211:927–939 (1954).

    PubMed  CAS  Google Scholar 

  87. G. A. R. Johnston, The intraspinal distribution of some depressant amino acids, J. Neurochem. 15:1013–1017 (1968).

    Article  PubMed  CAS  Google Scholar 

  88. L. Bito, H. Davson, E. Levin, M. Murray, and N. Snider, The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog, J. Neurochem. 13:1057–1067 (1966).

    Article  PubMed  CAS  Google Scholar 

  89. F. LaBella, S. Vivian, and G. Queen, Abundance of cystathionine in the pineal body. Free amino acids and related compounds of bovine pineal, anterior and posterior pituitary, and brain, Biochim. Biophys. Acta 158:286–288 (1968).

    Article  PubMed  CAS  Google Scholar 

  90. P. Mandel, Y. Godin, J. Mark, and C. Kayser, The distribution of free amino acids in the central nervous system of garden dormice during hibernation, J.Neurochem. 13:533–536 (1966).

    Article  PubMed  CAS  Google Scholar 

  91. W. L. Ryan and M. J. Carver, Free amino acids of human foetal and adult liver, Nature 212:292–293 (1966).

    Article  PubMed  CAS  Google Scholar 

  92. A. L. Prensky and H. W. Moser, Brain lipids, proteolipids, and free amino acids in maple syrup urine disease, J. Neurochem. 13:863–874 (1966).

    Article  PubMed  CAS  Google Scholar 

  93. P. Soupart, in Amino Acid Pools (J. T. Holden, ed.), p. 220–262, Elsevier. Amsterdam (1962).

    Google Scholar 

  94. T. L. Perry and R. T. Jones, The amino acid content of human cerebrospinal fluid in normal individuals and in mental defectives, J. Clin. Invest. 40:1363–1372 (1961).

    Article  PubMed  CAS  Google Scholar 

  95. J. C. Dickinson, H. Rosenblum, and P. B. Hamilton, Ion exchange chromatography of the free amino acids in the plasma of the newborn infant, Pediatrics 36:2–13 (1965).

    PubMed  CAS  Google Scholar 

  96. D. C. Cusworth and C. E. Dent, Renal clearances of amino acids in normal adults and in patients with aminoaciduria, Biochem. J. 74:550–561 (1960).

    PubMed  CAS  Google Scholar 

  97. R. G. Westall, in Amino Acid Pools (J. T. Holden, ed.), pp. 195–219, Elsevier, Amsterdam (1962).

    Google Scholar 

  98. R. H. McMenamy, C. C. Lund, G. J. Neville, and D. F. H. Wallach, Studies of unbound amino acid distributions in plasma, erythrocytes, leukocytes and urine of normal human subjects, J. Clin. Invest. 39:1675–1687 (1960).

    Article  PubMed  CAS  Google Scholar 

  99. M. D. Armstrong and K. N. Yates, Free amino acids in milk, Proc. Soc. Exptl. Biol Med. 113:680–683 (1963).

    CAS  Google Scholar 

  100. T. Gerritsen and H. A. Waisman, Homocystinuria, an error in the metabolism of methionine, Pediatrics 33:413–420 (1964).

    PubMed  CAS  Google Scholar 

  101. N. A. J. Carson, D. C. Cusworth, C. E. Dent, C. M. B. Field, D. W. Neill, and R. G. Westall, Homocystinuria: A new inborn error of metabolism associated with mental deficiency, Arch. Disease Childhood 38:425–436 (1963).

    Article  CAS  Google Scholar 

  102. J. C. Dickinson and P. B. Hamilton, The free amino acids of human spinal fluid determined by ion exchange chromatography, J. Neurochem. 13:1179–1187 (1966).

    Article  PubMed  CAS  Google Scholar 

  103. D. Miitung and K. N. Shivaram, Quantitative Papierchromatographische Bestimmung der freien Aminosäuren im Liquor cerebrospinalis gesunder Menschen. Hoppe-Seylers Z. Physiol. Chem. 317:34–38 (1959).

    Article  Google Scholar 

  104. G. De La Haba and G. L. Cantoni, The enzymatic synthesis of S-adenosyl-L-homo-cysteine from adenosine and homocysteine, J. Biol. Chem. 234:603–608 (1959).

    Google Scholar 

  105. L. E. Ericson, J. N. Williams, Jr., and C. A. Elvehjem, Enzymatic cleavage of S-adenosylhomocysteine and the transfer of labile methyl groups, Acta Chem. Scand. 9:859–860 (1955).

    Article  CAS  Google Scholar 

  106. J. A. Duerre, A hydrolytic nucleosidase acting on S-adenosylhomocysteine and on 5′-methylthioadenosine, J. Biol. Chem. 237:3737–3741 (1962).

    CAS  Google Scholar 

  107. C. Fromageot and P. Desnuelle, Actions comparées de différents systèmes biologiques sur l’homocystéine et la cysteine en anaérobiose: Homocystéine-désulfurase et cystéinedésulfurase, Bull. Soc. Chim. Biol. 24:1269–1273 (1942).

    Google Scholar 

  108. G. Medes and N. Floyd, Metabolism of sulfur, Biochem. J. 36:259–270 (1942).

    PubMed  CAS  Google Scholar 

  109. B. Jollès-Bergeret and M. Marty-Lopez, Métabolisme de l’acide L-homocysteine sulfinique chez les animaux supérieurs, Compt. Rend. Ser. D, 262:930–932 (1966).

    Google Scholar 

  110. B. Jollès-Bergeret, Désamination oxydative de l’aide l-homocystéine-sulfinique par la L-glutamodéshydrogénase de foie de boeuf. Inhibition de l’enzyme par l’acide L-homocystéique, Biochim. Biophys. Acta 146:45–53 (1967).

    Article  PubMed  Google Scholar 

  111. D. R. Curtis and J. C. Watkins, The pharmacology of amino acids related to Gamma-aminobutyric acid, Pharmacol. Rev. 17:347–391 (1965).

    PubMed  CAS  Google Scholar 

  112. D. R. Curtis, L. Hosli, and G. A. R. Johnston, Inhibition of spinal neurones by glycine, Nature 215:1502–1503 (1967).

    Article  PubMed  CAS  Google Scholar 

  113. W. P. Anslow, Jr., S. Simmonds, and V. du Vigneaud, The synthesis of the isomers of cystathionine and a study of their availability in sulfur metabolism, J.Biol. Chem. 166:35–45 (1946).

    PubMed  CAS  Google Scholar 

  114. F. Binkley, Synthesis of cystathionine by preparations from rat liver, J. Biol. Chem. 191:531–534 (1951).

    PubMed  CAS  Google Scholar 

  115. A. S. S. M. Selim and D. M. Greenberg, Further studies on cystathionine synthetase-serine deaminase of rat liver, Biochim. Biophys. Acta 42:211–217 (1960).

    Article  PubMed  CAS  Google Scholar 

  116. F. Binkley, G. M. Christensen, and W. N. Jensen, Pyridoxine and the transfer of sulfur, J. Biol. Chem. 194:109–113 (1952).

    PubMed  CAS  Google Scholar 

  117. C. Brown and S. Mallady, Separation of rat liver serine dehydrase from cystathionine synthetase, Federation Proc. 25:341 (1966).

    Google Scholar 

  118. J. D. Finkelstein and S. H. Mudd, Transsulfuration in mammals. The methionine-sparing effect of cystine, J. Biol. Chem. 242:873–880 (1967).

    PubMed  CAS  Google Scholar 

  119. J. S. Nishimura and D. M. Greenberg, Purification and properties of L-threonine dehydrase of sheep liver, J. Biol. Chem. 236:2684–2691 (1961).

    PubMed  CAS  Google Scholar 

  120. A. Nagabhushanam and D. M. Greenberg. Isolation and properties of a homogeneous preparation of cystathionine synthetase-L-serine and L-threonine dehydratase, J. Biol. Chem. 240:3002–3008 (1965).

    PubMed  CAS  Google Scholar 

  121. D. B. Hope, Distribution of cystathionine and cystathionine-synthetase in rat brain, Federation Proc. 18:249 (1959).

    Google Scholar 

  122. F. Binkley, W. P. Anslow, Jr., and V. du Vigneaud, The formation of cysteine from 1 l-S-(β-amino-β-carboxyethyl) homocysteine by liver tissue, J. Biol. Chem. 143:559–560 (1942).

    CAS  Google Scholar 

  123. W. P. Anslow, Jr., and V. du Vigneaud, The cleavage of the stereoisomers of cystathionine by liver extract, J. Biol. Chem. 170:245–250 (1947).

    CAS  Google Scholar 

  124. F. Binkley, Enzymatic cleavage of thioethers, J. Biol. Chem. 186:287–296 (1950).

    PubMed  CAS  Google Scholar 

  125. W. R. Carroll, G. W. Stacy, and V. du Vigneaud, α-Ketobutyric acid as a product in the enzymatic cleavage of cystathionine, J. Biol. Chem. 180:375–382 (1949).

    PubMed  CAS  Google Scholar 

  126. Y. Matsuo and D. M. Greenberg, A crystalline enzyme that cleaves homoserine and cystathionine, I. Isolation procedure and some physicochemical properties, J. Biol Chem. 230:545–560 (1958).

    PubMed  CAS  Google Scholar 

  127. Y. Matsuo and D. M. Greenberg, A crystalline enzyme that cleaves homoserine and cystathionine, IV. Mechanism of action, reversibility, and substrate specificity, J. Biol. Chem. 234:516–519 (1959).

    PubMed  CAS  Google Scholar 

  128. F. Binkley and D. Okeson, Purification of the enzyme responsible for the cleavage of cystathionine, J. Biol. Chem. 182:273–277 (1950).

    CAS  Google Scholar 

  129. D. Cavallini, C. De Marco, B. Mondovi, and B. G. Mori, The cleavage of cystine by cystathionase and the transulfuration of hypotaurine, Enzymologia 22:161–173 (1960–61).

    PubMed  CAS  Google Scholar 

  130. D. M. Greenberg, P. Mastalerz, and A. Nagabhushanam, Mechanism of djenkolic acid decomposition by cystathionase, Biochim. Biophys. Acta 81:158–164 (1964).

    CAS  Google Scholar 

  131. F. Binkley and C. K. Olson, Deamination of homoserine, J. Biol. Chem. 185:881–885 (1950).

    PubMed  CAS  Google Scholar 

  132. Y. Matsuo and D. M. Greenberg, A crystalline enzyme that cleaves homoserine and cystathionine, III. Coenzyme resolution, activators and inhibitors, J. Biol. Chem, 234:507–515 (1959).

    PubMed  CAS  Google Scholar 

  133. Y. Matsuo, M. Rothstein, and D. M. Greenberg, Metabolic pathways of homoserine in the mammal, J. Biol. Chem. 221:679–687 (1956).

    PubMed  CAS  Google Scholar 

  134. L. W. Parks and F. Schlenk, The stability and hydrolysis of S-adenosylmethionine; Isolation of S-ribosylmethionine, J. Biol. Chem. 230:295–305 (1958).

    PubMed  CAS  Google Scholar 

  135. S. H. Mudd, and G. L. Cantoni, Enzymatic hydrolysis of S-adenosylmethionine, Federation Proc. 17:279 (1958).

    Google Scholar 

  136. B. Mondovi and C. De Marco, The mechanism of cysteine-hypotaurine transsulfuration in the presence of cystathionase, Enzymilogia 23:156–162 (1961).

    CAS  Google Scholar 

  137. F. Chatagner and O. Trautmann, ‘Soluble’ cysteine desulphurase of rat liver as an adaptive enzyme, Nature 194:1281–1282 (1962).

    Article  CAS  Google Scholar 

  138. A. Kato, M. Ogura, H. Kimura, T. Kawai, and M. Suda, Control mechanism in the rat liver enzyme system converting L-methionine to L-cystine, J. Biochem. (Tokyo) 59:34–39 (1966).

    CAS  Google Scholar 

  139. H. L. A. Tarr, The enzymic formation of hydrogen sulphide by certain heterotrophic bacteria, Biochem. J. 27:1869–1874 (1933).

    PubMed  CAS  Google Scholar 

  140. C. Fromageot, E. Wookey, and P. Chaix, Sur la dégradation anaérobie de la l-cystéine par la desulfurase, nouveau ferment contenu dans le Foie, Compt. Rend. 209:1019–1021 (1939).

    CAS  Google Scholar 

  141. M. Laskowski and C. Fromageot, Some properties of desulfurase, J. Biol. Chem. 140:663–669 (1941).

    CAS  Google Scholar 

  142. F. Binkley, On the nature of serine dehydrase and cysteine desulfurase, J. Biol. Chem. 150:261–262 (1943).

    CAS  Google Scholar 

  143. C. V. Smythe, The utilization of cysteine and cystine by rat liver with the production of hydrogen sulfide, J. Biol. Chem. 142:387–400 (1942).

    CAS  Google Scholar 

  144. F. Chatagner and O. Trautmann, Effect of DL-ethionine on the level of cystathionase in rat liver, Nature 200:75 (1963).

    Article  PubMed  CAS  Google Scholar 

  145. A. Meister, H. P. Morris, and S. V. Tice, Effect of vitamin B6 deficiency on hepatic transaminase and cysteine desulfhydrase systems, Proc. Soc. Exptl. Biol. Med. 82:301–304 (1953).

    CAS  Google Scholar 

  146. B. Jollès-Bergeret, J. Labouesse, and F. Chatagner, Influence des hormones thyroidiennes sur la désulfuration de la cysteine par la foie de rat. Comparaison du comportement de la désulfuration avec celui d’autres réactions enzymatiques nécessitant le phosphate de pyridoxal, Bull. Soc. Chim. Biol. 42:51–63 (1960).

    PubMed  Google Scholar 

  147. F. Chatagner, B. Jollès-Bergeret, and O. Trautmann, Hormones thyroidiennes et enzymes de désulfuration de la L-cysteine du foie du rat, Biochim. Biophys. Acta 59:744–746 (1962).

    Article  PubMed  CAS  Google Scholar 

  148. F. Chatagner, O. Durieu-Trautmann, and M-C. Rain, Effects of puromycin and actinomycin D on the increase of cystathionase and cysteine sulphinic acid decarboxylase activities in the liver of thyroidectomized rat, Nature 214:88–90 (1967).

    Article  PubMed  CAS  Google Scholar 

  149. F. Chatagner and O. Durieu-Trautmann, Effects of pyridoxine deficiency on the adaptation of rat liver cystathionase to DL-ethionine and to thyroidectomy, Nature 207:1390–1391 (1965).

    Article  PubMed  CAS  Google Scholar 

  150. H. Blaschko, C. W. Carter, J. R. P. O’Brien, and G. H. Sloane-Stanley, Pyridoxine in relation to amine formation in the mammalian liver, J. Physiol. (London) 107: 18P-19P(1948).

    Google Scholar 

  151. M. N. D. Goswami, A. R. Robblee, and L. W. McElroy, Cysteine desulfydrase activity in chick liver, Arch. Biochem. Biophys. 70:80–86 (1957).

    Article  PubMed  CAS  Google Scholar 

  152. D. Cavallini, B. Mondovi, C. De Marco, and A. Scioscia-Santoro, Inhibitory effect of mercaptoethanol and hypotaurine on the desulf hydration of cysteine by cystathionase, Arch. Biochem. Biophys. 96:456–457 (1962).

    Article  PubMed  CAS  Google Scholar 

  153. D. Cavallini, B. Mondovi, C. De Marco, and A. Scioscia-Santoro, The Mechanism of desulphhydration of cysteine, Enzymologia 24:253–266 (1962).

    PubMed  CAS  Google Scholar 

  154. B. Jollès-Bergeret and F. Chatagner, Effect of 2-mercaptoethanolonthedeamination of L-cysteine by cystathionase of rat liver, Arch. Biochem. Biophys. 105:640–641 (1964).

    Article  PubMed  Google Scholar 

  155. R. J. Thibert, J. F. G. Diederich, and G. W. Kosicki, Behavior of α-substituted cystines in a cystathionase system and in a pyridoxal phosphate model system, Can. J. Biochem. Physiol. 45:1595–1617 (1967).

    Article  CAS  Google Scholar 

  156. M. Tishel and M. Mazelis, Enzymatic degradation of L-cystine by cytoplasmic particles from cabbage leaves, Nature 211:745–746 (1966).

    Article  PubMed  CAS  Google Scholar 

  157. M. Mazelis, N. Beimer, and R. K. Creveling, Cleavage of L-cystine by soluble enzyme preparations from Brassica species, Arch. Biochim. Biophys. 120:371–378 (1967).

    Article  CAS  Google Scholar 

  158. B. Sörbo, On the metabolism of thiosulfate esters, Acta Chem. Scand. 12:1990–1996 (1958).

    Article  Google Scholar 

  159. E. Brand, R. J. Block, B. Kassell, and G. F. Cahill, Carboxymethylcysteine metabolism; Its implications on therapy in cystinuria and on the methionine-cysteine relationship, Proc. Soc. Exptl. Biol Med. 35:501–503 (1936).

    Google Scholar 

  160. V. du Vigneaud, G. B. Brown, and J. P. Chandler, The synthesis of II-S-(β-amino-β-carboxyethyl) homocysteine and the replacement by it of cystine in the diet, J. Biol. Chem. 143:59–64 (1942).

    Google Scholar 

  161. F. Binkley and V. du Vigneaud, The formation of cysteine from homocysteine and serine by liver tissue of rats, J. Biol. Chem. 144:507–511 (1942).

    CAS  Google Scholar 

  162. F. Binkley, Cleavage of cystathionine by an enzyme system from rat liver, J. Biol. Chem. 155:39–43 (1944).

    CAS  Google Scholar 

  163. H. Blaschko and D. B. Hope, Excretion of cystathionine in pyridoxine deficiency, Biochem. J. 63:7P (1956).

    Google Scholar 

  164. D. B. Hope, L-Cystathionine in the urine of pyridoxine-deficient rats, Biochem. J. 66:486–489 (1957).

    PubMed  CAS  Google Scholar 

  165. H. H. Tallan, S. Moore, and W. H. Stein, L-Cystathionine in human brain, J.Biol. Chem. 230:707–716 (1958).

    PubMed  CAS  Google Scholar 

  166. T. Gerritsen and H. A. Waisman, Homocystinuria: Absence of cystathionine in the brain, Science 145:588 (1964).

    Article  PubMed  CAS  Google Scholar 

  167. H. Shimizu, Y. Kakimoto, and I. Sano, A method of determination of cystathionine and its distribution in human brain, J. Neurochem. 13:65–73 (1966).

    Article  PubMed  CAS  Google Scholar 

  168. D. B. Hope, Cystathionine accumulation in the brains of pyridoxine-deficient rats, J. Neurochem. 11:327–337 (1964).

    Article  PubMed  CAS  Google Scholar 

  169. N. Okumura, S. Otsuki, and A. Kameyama, Studies on free amino acids in human brain, J. Biochem. (Tokyo) 47:315–320 (1960).

    Google Scholar 

  170. M. E. Swendseid, J. Villalobos, and B. Friedrich, Free amino acids in plasma and tissues of rats fed a vitamin B6-deficient diet, J. Nutr. 82:206–208 (1964).

    PubMed  CAS  Google Scholar 

  171. L. R. Gjessing and A. Torvik, Distribution of cystathionine in human brain, Scand. J. Clin. Lab. Invest. 18:565 (1966).

    Article  PubMed  CAS  Google Scholar 

  172. L. Laster, S. H. Mudd, J. D. Finkelstein, and F. Irreverre, Homocystinuria due to cystathionine synthase deficiency: The metabolism of L-methionine, J. Clin. Invest. 44:1708–1719 (1965).

    Article  PubMed  CAS  Google Scholar 

  173. T. L. Perry, S. Hansen, and L. MacDougall, Homolanthionine excretion in homocystinuria, Science 152:1750–1751 (1966).

    Article  PubMed  CAS  Google Scholar 

  174. H. Harris, L. S. Penrose, and D. H. H. Thomas, Cystathioninuria, Ann. Human Genetics 23(4):442–453 (1958–1959).

    Article  CAS  Google Scholar 

  175. G. W. Frimpter, A. Haymovitz, and M. Horwith, Cystathioninuria, New Engl. J. Med. 268:333–339 (1963).

    Article  PubMed  CAS  Google Scholar 

  176. L. R. Gjessing, Studies of functional neural tumors, Scand. J. Clin. Lab. Invest. 15:474–478 (1963).

    Article  PubMed  CAS  Google Scholar 

  177. L. R. Gjessing, Studies of functional neural tumors, Scand. J. Clin. Lab. Invest. 15:479–482 (1963).

    Article  PubMed  CAS  Google Scholar 

  178. L. R. Gjessing, Cystathioninuria in neuroblastoma, Biochem. J. 89:42P (1963).

    Google Scholar 

  179. C. Ressler, J. Nelson, and M. Pfeffer, A pyridoxal-β-cyanoalanine relation in the rat, Nature 203:1286–1287 (1964).

    Article  PubMed  CAS  Google Scholar 

  180. C. Ressler, J. Nelson, and M. Pfeffer, Metabolism of β-cyanoalanine, Biochem. Pharmacol. 16:2309–2319 (1967).

    Article  PubMed  CAS  Google Scholar 

  181. M. Pfeffer and C. Ressler, β-Cyanoalanine, an inhibitor of rat liver cystathionase, Biochem. Pharmacol. 16:2299–2308 (1967).

    Article  PubMed  CAS  Google Scholar 

  182. A. Meister, P. E. Fraser, and S. V. Tice, Enzymatic desulfuration of β-mercapto-pyruvate to pyruvate, J. Biol. Chem. 206:561–575 (1954).

    PubMed  CAS  Google Scholar 

  183. D. Keilin, Cytochrome and intracellular oxidase, Proc. Roy. Soc. (London) Ser. B 106:418–444 (1930).

    Article  CAS  Google Scholar 

  184. N. W. Pirie, The formation of sulphate from cysteine and methionine by tissues in vitro, Biochem. J. 28:305–312 (1934).

    PubMed  CAS  Google Scholar 

  185. F. Chapeville and P. Fromageot, La formation de l’acide cystéinesulfinique à partir de la cystine chez le rat, Biochim. Biophys. Acta 17:275–276 (1955).

    Article  PubMed  CAS  Google Scholar 

  186. J. Awapara and V. M. Doctor, Enzymatic oxidation of cysteine-S35 to cysteine sulfinic acid, Arch. Biochem. Biophys. 58:506–507 (1955).

    Article  PubMed  CAS  Google Scholar 

  187. B. Sörbo and L. Ewetz, The enzymatic oxidation of cysteine to cysteine sulfinate in rat liver, Biochem. Biophys. Res. Commun. 18:359–363 (1965).

    Article  Google Scholar 

  188. A. Wainer, The production of cysteine sulfinic acid from cysteine in vitro, Biochim. Biophys. Acta 104:405–412 (1965).

    Article  PubMed  CAS  Google Scholar 

  189. L. Ewetz and B. Sörbo, Characteristics of the cysteinesulfinate-forming enzyme system in rat liver, Biochim. Biophys. Acta 128:296–305 (1966).

    Article  PubMed  CAS  Google Scholar 

  190. T. P. Singer and E. B. Kearney, Pathways of L-cysteinesulfinate metabolism in animal tissues, Biochim. Biophys. Acta 14:570–571 (1954).

    Article  PubMed  CAS  Google Scholar 

  191. T. P. Singer and E. B. Kearney, Intermediary metabolism of L-cysteinesulfinic acid in animal tissues, Arch. Biochem. Biophys. 61:397–409 (1956).

    Article  PubMed  CAS  Google Scholar 

  192. A. Wainer, Mitochondrial oxidation of cysteine, Biochim. Biophys. Acta 141:466–472 (1967).

    Article  PubMed  CAS  Google Scholar 

  193. O. W. Portman and G. V. Mann, The disposition of taurine-35S and taurocholate-35S in the rat: Dietary influences, J. Biol. Chem. 213:733–743 (1955).

    PubMed  CAS  Google Scholar 

  194. B. Bergeret and F. Chatagner, Désulfinication et décarboxylation enzymatiques de l’acide L-cysténe-sulfinique: Sa transformation quantitative en alanine et en hypotaurine, Biochim. Biophys. Acta 9:141–146 (1952).

    Article  PubMed  CAS  Google Scholar 

  195. G. Medes, Metabolism of sulphur, Biochem. J. 33:1559–1569 (1939).

    PubMed  CAS  Google Scholar 

  196. M. Heimberg, I. Fridovich, and P. Handler, The enzymatic oxidation of sulfite, J. Biol. Chem. 204:913–926 (1953).

    PubMed  CAS  Google Scholar 

  197. P. Fromageot and F. Chapeveille, Oxydation du sulfite en sulfate en présence de protohématine, Biochim. Biophys. Acta 50:325–333 (1961).

    Google Scholar 

  198. P. Fromageot and F. Chapeveille, Oxydation du sulfite en sulfate en présence de protohématine, Biochim. Biophys. Acta 50:334–347 (1961).

    Google Scholar 

  199. F. Chatagner, B. Bergeret, T. Séjourné, and C. Fromageot, Transamination et desulfination de l’acide L-cysteine-sulfinique, Biochim. Biophys. Acta 9:340–341 (1952).

    Article  PubMed  CAS  Google Scholar 

  200. E. B. Kearney and T. P. Singer, The coupled oxidation of succinate and L-cysteinesulfinate by soluble enzymes, Biochim. Biophys. Acta 14:572–573 (1954).

    Article  PubMed  CAS  Google Scholar 

  201. R. Balézs, D. Biesold, and K. Magyar, Some properties of rat brain mitochondrial preparations: Respiratory control, J. Neurochem. 10:685–708 (1963).

    Article  Google Scholar 

  202. R. M. MacLeod, W. Farkas, I. Fridovich, and P. Handler, Purification and properties of hepatic sulfite oxidase, J. Biol. Chem. 236:1841–1849 (1961).

    PubMed  CAS  Google Scholar 

  203. B. Bergeret and F. Chatagner, Sur la présence d’acide cysteinesulfinique dans le cerveau du rat normal, Biochim. Biophys. Acta 14:297 (1954).

    Article  PubMed  CAS  Google Scholar 

  204. H. G. Knauffand F. Böck, Über die freien gehirnaminosäuren und das Äthano-lamin der normalen Ratte, Sowie über das Verhalten Dieser Stoffe nach experimenteller insulinhypoglykämie, J. Neurochem. 6:171–182 (1961).

    Article  Google Scholar 

  205. M. K. Gaitonde, A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids, Biochem. J. 104:627–633 (1967).

    PubMed  CAS  Google Scholar 

  206. S. I. Singh and C. L. Malhotra, Amino acid content of monkey brain, J. Neurochem. 11:865–872 (1964).

    Article  PubMed  CAS  Google Scholar 

  207. C. E. Dent, B. Senior, and J. M. Walshe, The pathogenesis of cystinuria: II. Polarographic studies of the metabolism of sulphur-containing amino acids, J. Clin. Invest. 33:1216–1226 (1954).

    Article  PubMed  CAS  Google Scholar 

  208. G. W. Frimpter, The disulfide of L-cysteine and L-homocysteine in urine of patients with cystinuria, J. Biol. Chem. 236:PC 51–53 (1961).

    Google Scholar 

  209. S. W. Frimpter, Cystinuria: Metabolism of the disulfide of cysteine and homocysteine, J. Clin. Invest. 42:1956–1964 (1963).

    Article  PubMed  CAS  Google Scholar 

  210. S. A. Lough, W. L. Perilstein, H. J. Heinen, and L. W. Carter, Cystinuria, J. Biol. Chem. 139:487–498 (1941).

    CAS  Google Scholar 

  211. C. E. Dent and G. A. Rose, Amino acid metabolism in cystinuria, Quart. J. Med. 20:205–219 (1951).

    PubMed  CAS  Google Scholar 

  212. W. H. Stein, Excretion of amino acids in cystinuria, Proc. Soc. Exptl. Biol. Med. 78:705–708 (1951).

    CAS  Google Scholar 

  213. H. L. Yeh, W. Frankl, M. S. Dunn, P. Parker, B. Hughes, and P. Gyorgy, The urinary excretion of amino acids by a cystinuric subject, Am. J. Med. Sci. 214:507–512 (1947).

    Article  PubMed  CAS  Google Scholar 

  214. W. E. Knox, in The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1262–1282, McGraw-Hill, New York (1966).

    Google Scholar 

  215. L. E. Rosenberg, S. T. Downing, and S. Segal, Competitive inhibition of dibasic amino acid transport in rat kidney, J. Biol. Chem. 237:2265–2270 (1962).

    PubMed  CAS  Google Scholar 

  216. M. Fox, S. Thier, L. Rosenberg, W. Kiser, and S. Segal, Evidence against a single renal transport defect in cystinuria, New Engl. J. Med. 270:556–561 (1964).

    Article  PubMed  CAS  Google Scholar 

  217. J. C. Crawhall and S. Segal, Dithiothreitol in the study of cysteine transport, Biochim. Biophys. Acta 121:215–217 (1966).

    Article  PubMed  CAS  Google Scholar 

  218. J. C. Crawhall and S. Segal, The intracellular cysteine/cystine ratio in kidney cortex, Biochem. J. 99:19C-20C (1966).

    PubMed  CAS  Google Scholar 

  219. S. Oomori and S. Mizuhara, Structure of a new sulfur-containing amino acid, Arch. Biochem. Biophys. 96:179–185 (1962).

    Article  PubMed  CAS  Google Scholar 

  220. C. Buziassy and M. Mazelis, The formatiom of S-carboxymethyl-L-cysteine by radish (Raphanus sativus) seedling homogenates, Biochim. Biophys. Acta 86:185–186 (1964).

    Article  PubMed  CAS  Google Scholar 

  221. T. Ubuka, H. Kodama, and S. Mizuhara, Isolation of S-(carboxymethyl) cysteine from urine, Biochim. Biophys. Acta 141:266–269 (1967).

    Article  PubMed  CAS  Google Scholar 

  222. R. G. Westall, The amino acids and other ampholytes of urine, Biochem. J. 55:244–248 (1953).

    PubMed  CAS  Google Scholar 

  223. S. H. Mudd, F. Irreverre, and L. Laster, Sulfite oxidase deficiency in Man: Demonstration of the enzymatic defect, Science 156:1599–1602 (1967).

    Article  PubMed  CAS  Google Scholar 

  224. M. Ampola, E. M. Bixby, J. C. Crawhall, M. L. Efron, R. Parker, W. Sneddon, and E. P. Young, Isolation of a new sulphur-containing amino acid, Biochem. J. 107:16P (1968).

    CAS  Google Scholar 

  225. B. Bergeret, F. Chatagner, and C. Fromageot, Quelques relations entre le phosphate de pyridoxal et la décarboxylation de l’acide cystéinesulfinique par divers organes du rat normal ou du rat carencé en vitamine B6, Biochim. Biophys. Acta 17:128–135 (1955).

    Article  PubMed  CAS  Google Scholar 

  226. R. W. Virtue and M. E. Doster-Virtue, Studies on the production of taurocholic acid in the dog, J. Biol. Chem. 119:697–705 (1937).

    CAS  Google Scholar 

  227. H. Tarver and C. L. A. Schmidt, Radioactive sulfur studies, J. Biol. Chem. 146: 69–84 (1942).

    CAS  Google Scholar 

  228. M. G. Foster, C. W. Hooper, and G. H. Whipple, The metabolism of bile acids, J. Biol. Chem. 38:379–392 (1919).

    CAS  Google Scholar 

  229. M. G. Foster, C. W. Hooper, and G. H. Whipple, The metabolism of bile acids, J. Biol. Chem. 38:421–433 (1919).

    CAS  Google Scholar 

  230. R. W. Virtue and M. E. Doster-Virtue, Studies on the production of taurocholic acid in the dog, J. Biol. Chem. 127:431–437 (1939).

    CAS  Google Scholar 

  231. J. Awapara and W. J. Wingo, On the mechanism of taurine formation from cysteine in the rat, J. Biol. Chem. 203:189–194 (1953).

    PubMed  CAS  Google Scholar 

  232. D. Cavallini, C. De Marco, and B. Mondovi, Experiments with D-cysteine in the rat, J. Biol. Chem. 230:25–30 (1958).

    PubMed  CAS  Google Scholar 

  233. J. Awapara, Alanine and taurine formation from injected cysteine in the rat, Nature 165:76–77 (1950).

    Article  PubMed  CAS  Google Scholar 

  234. J. Awapara, 2-Aminoethanesulfinic acid: An intermediate in the oxidation of cysteine in vivo, J. Biol. Chem. 203:183–188 (1953).

    PubMed  CAS  Google Scholar 

  235. M. K. Gaitonde and D. Richter, in Metabolism of the Nervous System (D. Richter, ed.), pp. 449–455, Pergamon Press, London (1957).

    Google Scholar 

  236. M. K. Gaitonde and D. Richter, The metabolic activity of the proteins of the brain, Proc. Roy. Soc. (London) Ser. B 145:83–99 (1956).

    Article  CAS  Google Scholar 

  237. F. Chatagner and B. Bergeret, Décarboxylation enzymatique, in vitro et in vivo, de l’acide l’cystéinesulfinique dans le foie des animaux supérieurs, Compt. Rend. 232:448–450 (1951).

    CAS  Google Scholar 

  238. B. Bergeret, F. Chatagner and C. Fromageot, Desulfinication et décarboxylation de l’acide L-cystéinesulfinique chez l’animal vivant, Biochim. Biophys. Acta 9:147–149 (1952).

    Article  PubMed  CAS  Google Scholar 

  239. D. Cavallini, B. Mondovi, and C. De Marco, Il disolfossido délia cistamina nelle urine e nel fegato di ratto in seguito a somministrazione di derivati della cistina, Giorn. Biochim. 2:13–26 (1953).

    CAS  Google Scholar 

  240. L. Eldjarn, A. Pihl, and A. Sverdrup, The synthesis of 35S-labeled hypotaurine and its metabolism in rats and mice, J. Biol. Chem. 223:353–358 (1956).

    PubMed  CAS  Google Scholar 

  241. J. G. Jacobsen, L. L. Thomas, and L. H. Smith, Jr., Properties and distribution of mammalian L-cysteine sulfinate carboxy-lyases, Biochim. Biophys. Acta 85:103–116 (1964).

    PubMed  CAS  Google Scholar 

  242. W. O. Read and J. D. Welty, Synthesis of taurine and isethionic acid by dog heart slices, J. Biol. Chem. 237:1521–1522 (1962).

    PubMed  CAS  Google Scholar 

  243. H. Blaschko, l(-)-Cysteic acid decarboxylase of dog’s liver, J. Physiol. (London) 101:6P-7P (1942).

    Google Scholar 

  244. B. Bergeret and F. Chatagner, Utilisation d’echangeurs d’ions pour la séparation de quelques acides aminés formés au cours de la dégradation enzymatique de l’acide cystéinesulfinique. Application à l’isolement de l’hypotaurine (acide-2-aminoéthane-sulfinique), Biochim. Biophys. Acta 14:543–550 (1954).

    Article  PubMed  CAS  Google Scholar 

  245. H. Blaschko and D. B. Hope, Enzymic decarboxylation of cysteic and cysteine sulphinic acids, J. Physiol. (London) 126:52P-53P (1954).

    Google Scholar 

  246. H. Blaschko, l(-)-Cysteic acid decarboxylase, Biochem. J. 36:571–574 (1942).

    PubMed  CAS  Google Scholar 

  247. D. B. Hope, Pyridoxal phosphate as the coenzyme of the mammalian decarboxylase for L-cysteine sulphinic and L-cysteic acids, Biochem. J. 59:497–500 (1955).

    PubMed  CAS  Google Scholar 

  248. B. Sörbo and T. Heyman, On the purification of cysteinesulfinic acid decarboxylase and its substrate specificity, Biochim. Biophys. Acta 23:624–627 (1957).

    Article  PubMed  Google Scholar 

  249. G. Medes and N. Floyd, Metabolism of sulphur. Cysteic acid, Biochem. J. 36:836–844 (1942).

    PubMed  CAS  Google Scholar 

  250. B. Bergeret, F. Chatagner, and C. Fromageot, Êtude des decarboxylations de l’acide L-cystéinesulfinique de l’acide L-cystéique et de l’acide L-glutamique par divers organes du lapin. Influence du phosphate de pyridoxal et des groupements thiols, Biochim. Biophys. Acta 22:329–336 (1956).

    Article  PubMed  CAS  Google Scholar 

  251. R. S. Piha and H. Saukkonen, The L-cysteine sulphinic acid decarboxylase activity in various areas of the brain, Suomen Kemistilehti B39:112–114 (1966).

    Google Scholar 

  252. F. Chatagner, H. Tabechian, and B. Bergeret, Répercussion d’une carence en vitamine B6 sur le metabolisme de l’acide-L-cystéinesulfinique, in vitro et in vivo, chez le rat, Biochim. Biophys. Acta 13:313–318 (1954).

    Article  PubMed  CAS  Google Scholar 

  253. A. N. Davison, Amino acid decarboxylases in rat brain and liver, Biochim. Biophys. Acta 19:66–73 (1956).

    Article  PubMed  CAS  Google Scholar 

  254. A. N. Davison, The mechanism of the inhibition of decarboxylases by isonicotinyl hydrazide, Biochim. Biophys. Acta 19:131–140 (1956).

    Article  CAS  Google Scholar 

  255. G. H. Sloane-Stanley, Amino-acid decarboxylases of rat liver, Biochem. J. 45:556–559 (1949).

    PubMed  CAS  Google Scholar 

  256. F. Chatagner and B. Bergeret, Décarboxylation de l’acide cysteinesulfinique par le foie et la cerveau du rat maie, du rat femelle et du rat femelle ovariectomisé, Bull. Soc. Chim. Biol. 38:1159–1163 (1956).

    PubMed  CAS  Google Scholar 

  257. M. A. Bennett, Metabolism of sulphur, Biochem. J. 33:885–892 (1939).

    PubMed  CAS  Google Scholar 

  258. R. W. Virtue and M. E. Doster-Virtue, Studies on the production of taurocholic acid in the dog, J. Biol. Chem. 126:141–146 (1938).

    CAS  Google Scholar 

  259. A. Schöberl, Die Oxydation von Disulfiden zu Sulfonsäuren mit Wasserstoffsuperoxyd, Hoppe-Seylers Z. Physiol. Chem. 216:193–201 (1933).

    Article  Google Scholar 

  260. L. Eldjarn, The metabolism of cystamine and cysteamine, Scand. J. Clin. Lab. Invest. 6, Suppl. 13 (1954).

    Google Scholar 

  261. D. Cavallini, B. Mondovi, and C. De Marco, Ossidazione cistamina a ipotaurina nel ratto, Ric. Sci. 24:2649–2651 (1954).

    CAS  Google Scholar 

  262. L. Eldjarn, The conversion of cystinamine to taurine in rat, rabbit and man, J.Biol. Chem. 206:483–490 (1954).

    PubMed  CAS  Google Scholar 

  263. C. De Marco, G. Bombardieri, F. Riva, S. Dupré, and D. Cavallini, Degradation of cystaldimine, the product of oxidative deamination of cystamine, Biochim. Biophys. Acta 100:89–97 (1965).

    Article  CAS  Google Scholar 

  264. B. Mondovi, M. T. Costa, A. Finazzi Agro, and G. Rotilio, Pyridoxal phosphate as a prosthetic group of pig kidney diamine oxidase, Arch. Biochem. Biophys. 119:373–381 (1967).

    Article  PubMed  CAS  Google Scholar 

  265. C. De Marco, B. Mondovi, R. Scandurra, and D. Cavallini, Further investigation of the thiocysteamine oxidising enzyme, Enzymologia 25:94–104 (1962–1963).

    Google Scholar 

  266. D. Cavallini, R. Scandurra, and C. De Marco, The role of sulphur, sulphide and reducible dyes in the enzymic oxidation of cysteamine to hypotaurine, Biochem. J. 96:781–786 (1965).

    PubMed  CAS  Google Scholar 

  267. J. L. Wood and D. Cavallini, Enzymic oxidation of cysteamine to hypotaurine in the absence of a cofactor, Arch. Biochem. Biophys. 119:368–372 (1967).

    Article  PubMed  CAS  Google Scholar 

  268. Z. M. Bacq, G. Dechamps, P. Fischer, A Herve, H. Le Bihan, J. Lecomte, M. Pirotte, and P. Rayet, Protection against X-rays and therapy of radiation sickness with β-mercaptoethylamine, Science 117:633–636 (1953).

    Article  PubMed  CAS  Google Scholar 

  269. P. Fischerand M. Goutier-Pirotte, Métabolisme de la cysteamine et de la cystamine chez le lapin et la chien, Arch. Intern. Physiol. 62:76–100 (1954).

    Article  Google Scholar 

  270. K. Sumizu, Oxidation of hypotaurine in rat liver, Biochim. Biophys. Acta 63:210–212 (1962).

    Article  PubMed  CAS  Google Scholar 

  271. D. Cavallini, C. De Marco, B. Mondovi, and F. Stirpe, The biological oxidation of hypotaurine, Biochim. Biophys. Acta 15:301–303 (1954).

    Article  PubMed  CAS  Google Scholar 

  272. P. P. Cohen, Transamination with purified enzyme preparations (transaminase), J. Biol. Chem. 136:565–584 (1940).

    CAS  Google Scholar 

  273. C. L. A. Schmidt and G. W. Clark, The fate of certain sulfur compounds when fed to the dog, J. Biol. Chem. 53:193–207 (1922).

    CAS  Google Scholar 

  274. E. Mussini and F. Marcucci, in Amino Acid Pools (J. T. Holden, ed.), pp. 486–492, Elsevier, Amsterdam (1962).

    Google Scholar 

  275. G. G. J. Deffner, The dialyzable free organic constituents of squid blood, a comparison with nerve axoplasm, Biochim. Biophys. Acta 47:378–388 (1961).

    Article  PubMed  CAS  Google Scholar 

  276. J. D. Marks and H. K. Berry, in Amino Acid Pools (J. T. Holden, ed.), pp. 461–464, Elsevier, Amsterdam (1962).

    Google Scholar 

  277. L. J. Machlin and P. B. Pearson, Metabolism of taurine in the growing chicken, Arch. Biochem. Biophys. 70:35–42 (1957).

    Article  PubMed  CAS  Google Scholar 

  278. Huynh Vinh An and P. Fromageot, Dosage de la taurine échangeable des organes du rat, Bull. Soc. Chim. Biol. 42:221–226 (1960).

    Google Scholar 

  279. J. Awapara, Absorption of injected taurine-S35 by rat organs, J. Biol. Chem. 225: 877–882 (1957).

    PubMed  CAS  Google Scholar 

  280. P. L. Bouquet and P. Fromageot, Renouvellement de la taurine tissulaire chez le rat, Biochim. Biophys. Acta 97:222–232 (1965).

    Article  Google Scholar 

  281. E. J. Peck, Jr., and J. Awapara, Formation of taurine and isethionic acid in rat brain, Biochim. Biophys. Acta 141:499–506 (1967).

    Article  PubMed  CAS  Google Scholar 

  282. H. N. Christensen, B. Hess, and T. R. Riggs, Concentration of taurine, β-alanineand triiodothyronine by ascites carcinoma cells, Cancer Res. 14:124–127 (1954).

    PubMed  CAS  Google Scholar 

  283. G. Levi, J. Kandera, and A. Lajtha, Control of cerebral metabolite levels, Arch. Biochem. Biophys. 119:303–311 (1967).

    Article  PubMed  CAS  Google Scholar 

  284. A. A. Albanese, The amino acid requirements of man, Advan. Protein Chem. 3:227–268 (1947).

    Article  CAS  Google Scholar 

  285. B. A. Koechlin, On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference of its ion patterns, J. Biophys. Biochem. Cytol. 1:511–529 (1955).

    Article  PubMed  CAS  Google Scholar 

  286. J. D. Welty, W. O. Read, and E. H. Shaw, Jr., Isolation of 2-hydroxyethane-sulfonic acid (isethionic acid) from dog heart, J. Biol. Chem. 237:1160–1161 (1962).

    PubMed  CAS  Google Scholar 

  287. J. G. Jacobsen, L. L. Collins, amd L. H. Smith, Jr., Urinary excretion of isethionic acid in man, Nature 214:1247–1248 (1967).

    Article  PubMed  CAS  Google Scholar 

  288. P. Boulanger and G. Biserte, Chromatographie sur papier des acides aminés et polypeptides des liquides biologiques, Bull. Soc. Chim. Biol. 33:1930–1939 (1951).

    PubMed  CAS  Google Scholar 

  289. F. G. Fischer and J. Brander, Eine Analyse der Gespinste der Kreuzspinne, Hoppe-Seylers Z. Physiol. Chem. 320:92–102 (1960).

    Article  PubMed  CAS  Google Scholar 

  290. N. van Thoai and J. Roche, Phosphagens of marine animals, Ann. N. Y. Acad. Sci. 90:923–928 (1960).

    Article  PubMed  Google Scholar 

  291. G. E. Hobson, Adenosinetriphosphate-guanidyl phosphokinases in annelid worms, Biochem. J. 60:viii-ix (1955).

    PubMed  CAS  Google Scholar 

  292. N. van Thoai, J. Roche, and A. Olumucki, Sur la présence de la taurocyamine (guanidotaurine) dans l’urine de rat et sa signification biochimique dans l’excrétion azotée, Biochim. Biophys. Acta 14:448 (1954).

    Article  CAS  Google Scholar 

  293. E. Salkowski, Über die Enstehung der Schwefelsäure und das Verhalten des Taurins in thierischen Organismus, Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 58: 460–508 (1873).

    Article  Google Scholar 

  294. J. P. Blass, The simple monosubstituted guanidines of mammalian brain, Biochem. J. 77:484–489 (1960).

    PubMed  CAS  Google Scholar 

  295. L. S. Cieresko, P. H. Odense and R. W. Schmidt, Chemistry of coelenterates, Ann. N.Y. Acad. Sci. 90:920–922 (1960).

    Article  Google Scholar 

  296. B. Lindberg, Methylated taurines and choline sulphate in red algae, Acta Chem. Scand. 9:1323–1326 (1955).

    Article  CAS  Google Scholar 

  297. M. Kuriyama, New ninhydrin-reactive substance from red algae, Nature 192:969 (1961).

    Article  PubMed  CAS  Google Scholar 

  298. C. L. A. Schmidt and T. Watson, A method for the preparation of taurine in large quantities, J. Biol. Chem. 33:499–500 (1918).

    CAS  Google Scholar 

  299. P. R. Lewis, The free amino-acids of invertebrate nerve, Biochem. J. 52:330–338 (1952).

    PubMed  CAS  Google Scholar 

  300. E. Roberts and S. Frankel, Free amino acids in normal and neoplastic tissues of mice as studied by paper chromatography, Cancer Res. 9:645–648 (1949).

    PubMed  CAS  Google Scholar 

  301. J. Awapara, A. J. Landua, and R. Fuerst, Distribution of free amino acids and related substances in organs of the rat, Biochim. Biophys. Acta 5:457–462 (1950).

    Article  PubMed  CAS  Google Scholar 

  302. H. H. Tallan, Chromatographic investigation of the free and bound amino acids of animal tissues, Federation Proc. 13:309 (1954).

    Google Scholar 

  303. R. Dubreuil and P. S. Timiras, Effect of cortisone on free amino acids in the serum and organs of the rabbit, Am. J. Physiol. 174:20–26 (1953).

    PubMed  CAS  Google Scholar 

  304. A. H. Gordon, An investigation of the intracellular fluid of calf embryo muscle, Biochem. J. 45:99–105 (1949).

    PubMed  CAS  Google Scholar 

  305. D. J. Bell, W. M. Mclndoe, and D. Gross, Tissue components of the domestic fowl, Biochem. J. 71:355–364 (1959).

    PubMed  CAS  Google Scholar 

  306. J. Awapara, The taurine concentration of organs from fed and fasted rats, J. Biol. Chem. 218:571–576 (1956).

    PubMed  CAS  Google Scholar 

  307. J. C. Jacobsen and L. H. Smith, Jr., Comparison of decarboxylation of cysteine sulphinic acid-1–14C and cysteic acid-1–14C by human, dog and rat liver and brain, Nature 200:575–577 (1963).

    Article  PubMed  CAS  Google Scholar 

  308. J. Bremer, A method for the estimation of the taurine content and its conjugation with cholic acid in rat liver. Bile acids and steroids 22, Acta Chem. Scand. 9:683–688 (1955).

    Article  CAS  Google Scholar 

  309. J. E. Garvin, A new method for the determination of taurine in tissues, Arch. Biochem. Biophys. 91:219–225 (1960).

    Article  PubMed  CAS  Google Scholar 

  310. P. N. Campbell and T. S. Work, Fractionation of the nitrogenous water-soluble constituents of liver, Biochem. J. 50:449–454 (1952).

    PubMed  CAS  Google Scholar 

  311. G. Porcellati and R. H. S. Thompson, The effect of nerve section on the free amino acids of nervous tissue, J. Neurochem. 1:340–347 (1957).

    Article  PubMed  CAS  Google Scholar 

  312. R. W. R. Baker and G. Porcellati, The separation of nitrogen-containing phosphate esters from brain and spinal cord by ion-exchange chromatography, Biochem. J. 73:561–566 (1959).

    PubMed  CAS  Google Scholar 

  313. N. Okumura, S. Otsuki, and T. Aoyama, Studies on the free amino acids and related compounds in the brains of fish, amphibia, reptile, aves and mammal by ion exchange chromatography, J. Biochem. (Tokyo) 46:207–212 (1959).

    CAS  Google Scholar 

  314. J. K. Tews, S. H. Carter, P. D. Roa, and W. E. Stone, Free amino acids and related compounds in dog brain: Post mortem and anoxic changes, effects of ammonium chloride infusion and levels during seizures induced by Picrotoxin and by pentylenetetrazol, J. Neurochem. 10:641–653 (1963).

    Article  PubMed  CAS  Google Scholar 

  315. J. K. Tews and R. A. Lovell, The effect of a nutritional pyridoxine deficiency on free amino acids and related substances in mouse brain, J. Neurochem. 14:1–7 (1967).

    Article  PubMed  CAS  Google Scholar 

  316. G. B. Ansell and D. Richter, A note on the free amino acid content of rat brain, Biochem. J. 57:70–73 (1954).

    PubMed  CAS  Google Scholar 

  317. R. S. De Ropp and E. H. Snedeker, Effect of drugs on amino acid levels in the rat brain: Hypoglycemic agents, J. Neurochem. 7:128–134 (1961).

    Article  Google Scholar 

  318. R. S. Piha, S. S. Oja, and A. J. Uusitalo, The effect of chlorpromazine on free amino acids in the rat brain, Ann Med. Exptl. Biol. Fenniae (Helsinki) 40:1–28 Suppl. 5 (1962).

    Google Scholar 

  319. M. J. Carver, Influence of phenylalanine administration on the free amino acids of brain and liver in the rat, J. Neurochem. 12:45–50 (1965).

    Article  PubMed  CAS  Google Scholar 

  320. M. K. Gaitonde, unpublished data.

    Google Scholar 

  321. R. K. Shaw and J. D. Heine, Ninhydrin positive substances in different areas of normal rat brain, J. Neurochem. 12:151–155 (1965).

    Article  PubMed  CAS  Google Scholar 

  322. D. A. Roe and M. O. Weston, Potential significance of free taurine in the diet, Nature 205:287–288 (1965).

    Article  PubMed  CAS  Google Scholar 

  323. O. W. Portmann and G. V. Mann, Further studies of the metabolism of taurine-S35 by the rat, J. Biol. Chem. 220:105–112 (1956).

    Google Scholar 

  324. C. L. A. Schmidt and E. G. Allen, Further studies on the elimination of taurine administered to man, J. Biol. Chem. 42:55–58 (1920).

    CAS  Google Scholar 

  325. K. Bloch, B. N. Berg, and D. Rittenberg, The biological conversion of cholesterol to cholic acid, J. Biol. Chem. 149:511–517 (1943).

    CAS  Google Scholar 

  326. I. Zabin and W. F. Barker, The conversion of cholesterol and acetate to cholic acid, J. Biol. Chem. 205:633–636 (1953).

    PubMed  CAS  Google Scholar 

  327. C. Wu, Metabolism of free amino acids in fasted and zein-fed rats, J. Biol. Chem. 207:775–786 (1954).

    PubMed  CAS  Google Scholar 

  328. J. Holtfreter, T. R. Koszalka, and L. L. Miller, Chromatographic studies of amino acids in the eggs and embryos of various species, Exptl. Cell Res. 1:453–459 (1950).

    Article  CAS  Google Scholar 

  329. S. Rosenberg and P. L. Kirk, Isolation of dialyzable growth factor for chick tissue culture. Identification of the ninhydrin reactive band, Arch. Biochem. Biophys. 44:226–229 (1953).

    Article  PubMed  CAS  Google Scholar 

  330. W. Hull and P. L. Kirk, Tissue culture studies, J. Gen. Physiol. 33:335–342 (1949–1950).

    Article  PubMed  CAS  Google Scholar 

  331. F. Gonzales and J. Awapara, The taurine concentration of developing chick embryo, Exptl. Cell Res. 9:353–355 (1955).

    Article  PubMed  CAS  Google Scholar 

  332. D. W. Micks and J. P. Ellis, Free amino acids in the developmental stages of the Mosquito, Proc. Soc. Exptl. Biol. Med. 79:191–193 (1952).

    CAS  Google Scholar 

  333. A. E. Ramirez de Guglielmone and C. J. Gomez, Influence of neonatal hypothyroidism on amino acids in developing rat brain, J. Neurochem. 13:1017–1025 (1966).

    Article  Google Scholar 

  334. A. Agur and A. Pinsky, Comparative study of taurine, sulfur containing amino acids and phospho-lipids in schizophrenic and normal blood and urine, Israel J. Chem. 2:318 (1964)

    Google Scholar 

  335. H. Blaschko, S. P. Datta, and H. Harris, Pyridoxin deficiency in the rat: Liver L-cysteic acid decarboxylase activity and urinary amino-acids, Brit. J. Nutr. 364–371 (1953).

    Google Scholar 

  336. D. B. Hope, The persistence of taurine in the brains of pyridoxine-deficient rats, J. Neurochem. 1:364–369 (1957).

    Article  PubMed  CAS  Google Scholar 

  337. E. Nyffenegger, K. Lauber, and H. Aebi, Die Taurinausscheidung normaler und B6-avitaminotischer Ratten nach Ganzkörperbestrahlung, Biochem. Z. 333:226–235 (1960).

    PubMed  CAS  Google Scholar 

  338. L. C. Smith and S. R. Nelson, Effect of vit. E-deficiency on free amino acids of various rabbit tissues, Proc. Soc. Exptl. Biol. Med. 94:644–646 (1957).

    CAS  Google Scholar 

  339. E. I. Pentz, Factors influencing the excretion of taurine in irradiated rats with particular reference to the adrenal glands, J. Biol. Chem. 231:165–174 (1958).

    PubMed  CAS  Google Scholar 

  340. G. Rouser, A. J. Samuels, K. Kinugasa, B. Jelinek, and D. Heller, in Amino Acid Pools (J. T. Holden, ed.), pp. 396–412, Elsevier, Amsterdam (1962).

    Google Scholar 

  341. H. O. Goodman, J. S. King, and J. J. Thomas, Urinary excretion of beta-amino-isobutyric acid and taurine in mongolism, Nature 204:650–651 (1964).

    Article  PubMed  CAS  Google Scholar 

  342. N. C. Nevin, L. J. Hurwitz, and D. W. Neill, Familial camptodactyly with taurinuria, J. Med. Genet. 3:265–268 (1966).

    Article  PubMed  CAS  Google Scholar 

  343. D. W. Neill and J. A. Weaver, Amino acid and protein metabolism in pernicious anaemia, Brit. J. Haematol. 4:447–455 (1958).

    Article  CAS  Google Scholar 

  344. K. F. Killam and J. A. Bain, Convulsant hydrazides, J. Pharmacol. Exptl. Therap. 119:255–262 (1957).

    CAS  Google Scholar 

  345. H. M. Hakkinen and E. Kulonen, The effect of ethanol on the amino acids of the rat brain with a reference to the administration of glutamine, Biochem. J. 78:588–593 (1961).

    PubMed  CAS  Google Scholar 

  346. D. P. Earle, Jr., K. Smull, and J. Victor, Effects of excess dietary cysteic acid, dl-methionine and taurine on the rat liver, J. Exptl. Med. 76:317–324 (1942).

    Article  CAS  Google Scholar 

  347. J. A. Barclay, R. G. Kenney, and W. T. Cooke, Treatment of infective hepatitis, Brit. Med. J. 2:298 (1945).

    Article  Google Scholar 

  348. D. Seligson, G. J. McCormick, and V. Sborov, Blood ketoglutarate and pyruvate in liver disease, J. Clin. Invest. 31:661 (1952).

    Google Scholar 

  349. D. S. Amatuzio and S. Nesbitt, A study of pyruvic acid in the blood and spinal fluid ofpatients with liver disease with and without hepatic coma, J. Clin. Invest. 29:1486–1490 (1950).

    Article  PubMed  CAS  Google Scholar 

  350. C. L. A. Schmidt, E. von Adelung, and T. Watson, On the elimination of taurine administered to man, J. Biol. Chem. 33:501–503 (1918).

    CAS  Google Scholar 

  351. G. T. Lewis and H. B. Lewis, The metabolism of sulfur, J. Biol. Chem. 69:589–598 (1962).

    Google Scholar 

  352. W. C. Rose and B. T. Huddlestun, The availability of taurine as a supplementing agent in diets deficient in cystine, J. Biol. Chem. 69:599–605 (1926).

    CAS  Google Scholar 

  353. H. H. Mitchell, Cysteine and taurine as substituents for cystine in nutrition, J. Nutr. 4:95–104 (1931).

    CAS  Google Scholar 

  354. D. P. Earle, Jr. and J. Victor, The effect of various diets on the liver damage caused by excess cystine, J. Exptl. Med. 75:179–189 (1942).

    Article  CAS  Google Scholar 

  355. A. C. Kurtz and J. M. Luck, Studies on Annelid muscle, J. Biol. Chem. 111:577–584 (1935).

    CAS  Google Scholar 

  356. K. D. Neame, L-Cysteine as inhibitor of potassium retention by brain slices, Nature 203:1067 (1964).

    Article  PubMed  CAS  Google Scholar 

  357. J. Dawson and A. Bone, The effect of thiols and ganglioside on the alterations in water, sodium and potassium distribution produced in brain slices by vasopressin protamine, J. Neurochem. 13:257–268 (1966).

    Article  PubMed  CAS  Google Scholar 

  358. J. C. Smith and R. B. Weiskopf, Effect of cysteine on acetylcholine synthesis Nature 215: 1379–1380 (1967).

    Article  PubMed  CAS  Google Scholar 

  359. W. O. Read and J. D. Welty, Effect of taurine on epinephrine and digoxin induced irregularities of the dog heart, J. Pharmacol. Exptl. Therap. 139:283–289 (1963).

    CAS  Google Scholar 

  360. K. H. Byington, Aminosulfonic acids and cardiac arrhythmias, Dissertation Abstr. 25:3075(1964).

    Google Scholar 

  361. H. F. Bradford and H. Mcllwain, Ionic basis for the depolarization of cerebral tissues by excitatory acidic amino acids, J. Neurochem. 13:1163–1177 (1966).

    Article  PubMed  CAS  Google Scholar 

  362. R. Werman, R. A. Davidoff, and M. H. Aprison, The inhibitory action of cystathionine, Life Sci. 5:1431–1440 (1966).

    Article  PubMed  CAS  Google Scholar 

  363. D. E. Curtis, J. W. Phillis, and J. C. Watkins, unpublished observation.

    Google Scholar 

  364. W. Pollin, P. V. Cardon, Jr., and S. S. Kety, Effects of amino acid feedings in schizophrenic patients treated with iproniazid, Science 133:104–105 (1961).

    Article  PubMed  CAS  Google Scholar 

  365. L. C. Park, R. J. Baldessarini, and S. S. Kety, Methionine effects on chronic schizophrenics, Arch. Gen. Psychiat. 12:346–351 (1965).

    Article  PubMed  CAS  Google Scholar 

  366. J. Kalousek, J. Kohout, Z. Pinta, and F. Boska, The antiepileptic effect of methionine, Cesk. Neurol. 26:21–26 (1963).

    Google Scholar 

  367. E. C. Donaghue and D. Richter, unpublished observation.

    Google Scholar 

  368. J. A. Wada, H. Ikeda, and K. Berry, Reversible behavioural and electrographic manifestations induced by methionine sulfoximine, Neurology 17:854–868 (1967).

    Article  PubMed  CAS  Google Scholar 

  369. I. H. Krakoff, Effect of methionine sulfoximine in man, Clin. Pharmacol. Therap. 2:599–604 (1961).

    CAS  Google Scholar 

  370. R. G. Heath, W. Nesselhof, Jr., and E. Timmons, D,L-Methionine-d.l-sulfoximine effects in schizophrenic patients, Arch. Gen. Psychiat. 14:213–217 (1966).

    Article  PubMed  CAS  Google Scholar 

  371. D. Ackermann and H. A. Heinsen, Über die physiologische Wirkung des Asterubins und anderer, zum Teil neu dargestellter, schwefelhaltiger Guanidinderivate, Hoppe-Seylers Z. Physiol. Chem. 235:115–121 (1935).

    Article  CAS  Google Scholar 

  372. A. B. Macallum and C. Sivertz, The potentiation of insulin by sulfones, Can. Chem. Process. 26:569(1942).

    CAS  Google Scholar 

  373. W. G. Martin and H. Patrick, The effect of taurine on the sulfate-35S retention by chicks, Poultry Sci. 40:267–268 (1961).

    Article  CAS  Google Scholar 

  374. M. Kieny, Les besoins nutritifs spécifiques de tibias d’embryon de poulet en culture in vitro sur milieux synthétiques, Compt. Rend. Soc. Biol. 149:418–421 (1955).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Gaitonde, M.K. (1970). Sulfur Amino Acids. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics