Skip to main content
Log in

The Influence of Conductivity on the Reflected Ground Penetrating Radar SIgnal Amplitude

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

Within the ground-penetrating radar (GPR) bandwidth a subsurface materials is considered to be an ideal dielectric, which is not always the case. We have developed the dependence of the reflection coefficient of electromagnetic waves with regard to conductivity, which showed a significant effect of the difference in conductivity on the reflectivity and signal amplitude. This was confirmed by physical modeling. The electrical conductivities of a geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground-penetrating radar can be used to solve the problem of mapping of the halocline or to determine water contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annan, A.P., Ground Penetrating Radar Workshop Notes, Ontario: Sensors & Software Inc., 2001.

    Google Scholar 

  • Debai, P., Izbrannye trudy. Stat’i 1909–1965 (Collected Papers. Articles for 1909–1965), Dzyalo, I.E. and Gurevich, V.L., Eds., Leningrad: Nauka, 1987.

  • Ellison, W.J., English, S.J., et al., A comparison of ocean emissivity models using AMSU, the SSM/I, the TRMM Microwave Imager, and airborne radiometers observations, J. Geophys. Res., 2003, vol. 108, no. D21, p. 4663.

    Article  Google Scholar 

  • Gadani, D.H., Rana, V.A., and Bhatnagar, S.P., Effect of salinity on the dielectric properties of water, Indian J. Pure Appl. Phys., 2012, vol. 50, pp. 405–410.

    Google Scholar 

  • Ground Penetrating Radar Theory and Applications, Jol, H.M., Ed., London: Elsevier, 2009.

  • Krylov, S.S., Bobrov, N.Yu., and Kiselev, E.Yu., Georadiolocation studies of halocline, Proc. 4th EAGE Int. Sci. Pract. Conf. and Exhibition on Engineering and Mining Geophysics, Gelendzhik, 25 aprelya, 2008, 2008. http://www.earthdoc.org/publication/publicationdetails/?publication=46319.

    Google Scholar 

  • Meissner, Th. and Wentz, F.J., The complex dielectric constant of pure and sea water from microwave satellite observations, IEEE Trans. Geosci. Remote Sensing, 2004, vol. 42, no. 9, pp. 1836–1849.

    Article  Google Scholar 

  • Parsell, E., Berkeley Physics Course. Vol. 2. Electricity and Magnetism, Education Development Center, 1965.

    Google Scholar 

  • Sadovskii, I.N., Analiz modelei dielektricheskoi pronitsaemosti vodnoi sredy, ispol’zuemykh v zadachakh distantsionnogo zondirovaniya akvatorii (Analysis of Models of the Dielectric Permitivity of the Water Environment Used in Problems of Remote Sensing of Water Areas), Moscow: FGBUN IKI RAN, 2013.

    Google Scholar 

  • Somaraju, R. and Trumpf, J., Frequency, temperature and salinity variation of the permittivity of seawater, IEEE Trans. Antennas and Propagation, 2006, vol. 54, no. 11, pp. 3441–3448.

    Article  Google Scholar 

  • Starovoitov, A.V., Interpretatsiya georadiolokatsionnykh dannykh (Interpretation of Georadiolocation Data), Moscow: Mosk. Gos. Univ., 2008.

    Google Scholar 

  • Stogryn, A., Equations for calculating the dielectric constant for saline water, IEEE Trans. Microwave Theory and Techniques, 1971, vol. 19, no. 8, pp. 733–736.

    Article  Google Scholar 

  • Stogryn, A.P., Bull, H.T., Rubayi, K., and Iravanchy, S., The Microwave Dielectric Properties of Sea and Fresh Water, California, Azusa, GenCorp Aerojet, 1995.

    Google Scholar 

  • Sudakova, M.S., Development and application of the method of dielectric measurements using field georadar in laboratory conditions, Extended Abstract of Cand. Sci. (Geol.-Mineral.) Dissertation, Moscow: Mosk. Gos. Univ., 2009.

    Google Scholar 

  • Vladov, M.L. and Pyatilova, A.M., Estimation of environment absorbing properties in laboratory ground penetrating radar researches, Russ. Geophys. J., 2015, no. 6, pp. 55–61.

    Google Scholar 

  • Vladov, M.L. and Sudakova, M.S., Georadiolokatsiya: ot fizicheskikh osnov do perspektivnykh napravlenii (Ground Penetrating Radar. From physical Bases to Future Trends), Moscow: Geos, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sudakova.

Additional information

Original Russian Text © M.S. Sudakova, M.L. Vladov, M.R. Sadurtdinov, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 4: Geologiya, 2018, No. 1, pp. 100–106.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudakova, M.S., Vladov, M.L. & Sadurtdinov, M.R. The Influence of Conductivity on the Reflected Ground Penetrating Radar SIgnal Amplitude. Moscow Univ. Geol. Bull. 73, 206–212 (2018). https://doi.org/10.3103/S0145875218020102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875218020102

Keywords

Navigation