Skip to main content
Log in

Physical approaches to the design of microactuators for micro- and nanopositioning: The information aspect

  • Published:
Automatic Documentation and Mathematical Linguistics Aims and scope

Abstract

Microactuators are an important tool for precise manipulation of components and materials in nanotechnologies. The problems of design and application of microactuators for micro- and nanopositioning, microassembly, and microrobotics are considered in this paper. The basic parameters and models of piezoelectric, magnetostriction, electromagnetic, electrostatic, electrothermal, and hybrid microactuators are described. A general information approach that implies the description of physical models used in order to analyze microactuator behavior and optimize their design is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sardan, O., Eichoorn, V., Petersen, N.D., Fatikow, S., Sigmund, O., and Boggild, P., Rapid Prototyping of Nanotube-Based Devices Using Topology-Optimized Microgrippers, Nanotech., 2008, vol. 19, no. 49, pp. 495–503.

    Article  Google Scholar 

  2. Chronis, N. and Lee, L.P., Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution, J. Microelectromech. Sys., 2005, vol. 14, no. 4, pp. 857–863.

    Article  Google Scholar 

  3. Kim, K., Liu, X., Zhang, Y., and Syn, Y., Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper with Two-Axis Force Feedback, J. Micromech. Microeng., 2008, vol. 18, no. 5, pp. 55–63.

    Google Scholar 

  4. Sahu, B., Taylor, C.R., and Leang, K.K., Emerging Challenges of Microactuators for Nanoscale Positioning, Assembly, and Manipulation, ASME J. Manufact. Sci. and Eng., 2010, vol. 132, p. 030917.

    Article  Google Scholar 

  5. Abbott, J.J., Nagy, Z., Beyeler, F., and Nelson, B.J., Robotics in the Small. Pt. 1. Microrobotics, IEEE Robot. Automation Mag., 2007, vol. 14, no. 2, pp. 92–103.

    Article  Google Scholar 

  6. Zhang, B. and Zhu, Z., Developing a Linear Piezomotor with Nanometer Resolution and High Stiffness, IEEE/ASME Trans. Mechatron., 1997, vol. 2, no. 1, pp. 22–29.

    Article  Google Scholar 

  7. Korpukhin, A.S., Zhukov, A.A., and Grin’kin, E.A., Microsystem Bimorph Actuator for Space Microrobotics Devices, Sb. tezisov 19-i Vseros. nauch.-tekhn. konf. s mezhdunar. uchastiem “Ekstremal’naya robototekhnika” (Proc. 19th All-Russian Sci. Tech. Conf. with Int. Part. “Extreme Robotics”), St. Petersburg, 2008.

  8. Andersen, K.N., Petersen, D.H., Karlson, K., Molhave, K., Sardan, O., Horsewell, A., Eichorn, V., Fatikow, S., and Boggild, P., Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation, IEEE Trans. Nanotech., 2009, vol. 8, no. 1, pp. 76–85.

    Article  Google Scholar 

  9. Zou, Q., Leang, K.K., Sadoun, E., Reed, M.J., and Devasia, S., Control Issues in High-Speed AFM for Biological Application: Collagen Imaging Example, Asian J. Cont.: Spec. Issue Adv. Nano-Tech. Cont., 2004, vol. 6, no. 2, pp. 164–178.

    Google Scholar 

  10. Molhave, K., Wich, T., Kortschack, A., and Boggild, P., Pick-and-Place Nanomanipulation Using Microfabricated Grippers, Nanotech., 2006, vol. 8, no. 1, pp. 2434–2441.

    Article  Google Scholar 

  11. Chen, S.-C. and Culpepper, M.L., Design of a Six-Axis Micro-Scale Nanopositioner-[Mu] HexFlex, Precis. Eng., 2006, vol. 30, no. 3, pp. 314–324.

    Article  Google Scholar 

  12. Mason, W.P., Piezoelectricity, Its History and Applications, J. Acoust. Soc. Amer., 1981, vol. 70, no. 6, pp. 1561–1566.

    Article  Google Scholar 

  13. Santosh, D., Evangelos, E., and Moheimani, S.O.R., A Survey of Control Issues in Nanopositioning, IEEE Trans. Cont. Sys. Tech., 2007, vol. 15, no. 5, pp. 802–823.

    Article  Google Scholar 

  14. Binnig, G. and Smith, D.P.E., Single-Tube Three-Dimensional Scanner for Scanning Tunneling Microscopy, Rev. Sci. Instrum., 1986, vol. 57, no. 8, pp. 1688–1689.

    Article  Google Scholar 

  15. Gao, W., Hocken, R.G., Patten, J.A., Lovingood, J., and Lucca, D.A., Construction and Testing of a Nanomachining Instrument, Precis. Eng., 2000, vol. 24, no. 4, pp. 320–328.

    Article  Google Scholar 

  16. Shim, J. and Gweon, D., Piezo-Driven Metrological Multiaxis Nanopositioner, Rev. Sci. Instrum., 2001, vol. 72, no. 11, pp. 4183–4187.

    Article  Google Scholar 

  17. Salapaka, S. and Sebastian, A., Control of the Nanopositioning Devices, Proc. IEEE Conf. Dec. Control 2003, pp. 3644–3649.

  18. Chen, C.J., Electromechanical Deflection of Piezoelectric Tubes with Quartered Electrodes, Appl. Phys. Lett., 1992, vol. 60, no. 1, pp. 132–138.

    Article  Google Scholar 

  19. Jung, H., Shim, J.Y., and Gweon, D., New Open-Loop Actuating Method of Piezoelectric Actuators for Removing Hysteresis and Creep, Rev. Sci. Instrum., 2000, vol. 71, no. 9, pp. 3436–3440.

    Article  Google Scholar 

  20. Croft, D., Shed, G., and Devasia, S., Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application, ASME J. Dyn. Sys. Cont., 2001, vol. 123, no. 1, pp. 35–43.

    Article  Google Scholar 

  21. Fizicheskii entsiklopedicheskii slovar’. T. 1. (Encyclopedic Dictionary of Physics. Vol. 1), Moscow: Sovetskaya entsiklopediya, 1960.

  22. Afonin, S.M., Harmonic Linearization of Hysteresis, Static, and Dynamic Characteristics of Nanomotion Piezomotor, Vest. mashinostr., 2010, no. 5, pp. 3–7.

  23. Shimizu, N., Kimura, T., Nakamura, T., and Umebu, I., An Ultrahigh Vacuum Scanning Tunneling Microscope with a New Inchworm Mechanism, J. Vacuum Sci. Tech. A., 1990, vol. 8, no. 1, pp. 333–335.

    Article  Google Scholar 

  24. Ueno, T., Qiu, J., and Tani, J., Magnetic Force Control with Composite of Giant Magnetostrictive and Piezoelectric Materials, IEEE Trans. Magn., 2003, vol. 39, no. 6, pp. 3534–3540.

    Article  Google Scholar 

  25. Fizicheskii entsiklopedicheskii slovar’. T. 3. (Encyclopedic Dictionary of Physics. Vol. 3), Moscow: Sovetskaya entsiklopediya, 1963.

  26. Despont, M., Drechsler, U., Haberle, W., Lantz, M.A., and Rothuizen, H.E., A Vibration Resistant Nanopositioner for Mobile Parallel-Probe Storage Applications, J. Microelectromech. Sys., 2007, vol. 16, no. 1, pp. 130–139.

    Article  Google Scholar 

  27. Yu, H., Ma, P., and He, D., Motion Mechanism and Gait Planning of a Wheeled Micro Robot, J. Southeast Univ. (English Ed.), 2006, vol. 22, no. 2, pp. 191–195.

    Google Scholar 

  28. Gillies, G.T., Ritter, R.C., Broaddus, W.C., Grady, M.S., Howard, M.A.III, and McNeil, R.G., Magnetic Manipulation Instrumentation for Medical Physics Research, Rev. Sci. Instrum., 1994, vol. 65, no. 3, pp. 533–562.

    Article  Google Scholar 

  29. Yesin, K.B., Vollmers, K., and Nelson, B.J., Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields, Int. J. Robot. Res., 2006, vol. 25, nos. 5–6, pp. 527–536.

    Article  Google Scholar 

  30. Bergeles, C., Shamaei, K., Abbolt, J.J., and Nelson, B.J., Single-Camera Focus-Based Localization of Intraocular Devices, IEEE Trans. Biomed. Eng., 2010, vol. 57, no. 8, pp. 2064–2074.

    Article  Google Scholar 

  31. Kummer, M.P., Abbolt, J.J., Kratochvil, B.E., Borer, R., Sengul, A., and Nelson, B.J., OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation, IEEE Trans. Robot., 2010, vol. 26, no. 6, pp. 1006–1017.

    Article  Google Scholar 

  32. Imamura, T., Katayama, M., Ikegawa, Y., Ohwe, T., Koishi, R., and Koshikawa, T., MEMS-Based Integrated Head/Actuator/Slider for Hard Disk Drives, IEEE/ASME Trans. Mechatron., 1998, vol. 3, no. 3, pp. 166–174.

    Article  Google Scholar 

  33. Carley, L.R., Bain, J.A., Fedder, G.K., Greve, D.W., Guillou, D.F., Lu, M.S.C., Mukherjee, T., Santhanam, S., Abelmann, L., and Min, S., Single-Chip Computers with Microelectromechanical Systems-Based Magnetic Memory, J. Appl. Phys., 2000, vol. 87, no. 9, pp. 6680–6685.

    Article  Google Scholar 

  34. Liu, X., Tong, J., and Sun, Y., A Millimeter-Sized Nanomanipulator With Sub-Nanometer Positioning Resolution and Large Force Output, Smart Mater. Struct., 2007, vol. 16, no. 5, pp. 1742–1750.

    Article  Google Scholar 

  35. Volland, B.E., Heerlein, H., and Rangelow, I.W., Electrostatically Driven Microgripper, Microelect. Eng., 2002, vol. 61–62, pp. 1015–1023.

    Article  Google Scholar 

  36. Chang, H.-C., Tsai, J.M.-L., Tsai H.-C., and Fang W., Design, Fabrication, and Testing of a 3-DOF Harm Micromanipulator on (111) Silicon Substrate, Sens. Actuators A., 2006, vol. 125, no. 2, pp. 438–445.

    Article  Google Scholar 

  37. Beueler, F., Neild, A., Oberti, S., Bell, D.J., and Sun, Y., Monolithically Fabricated Microgripper with Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in An Ultrasonic Field, J. Microelectromech. Sys., 2007, vol. 16, no. 1, pp. 7–15.

    Article  Google Scholar 

  38. Hung, E.S. and Senturia, S.D., Extending the Travel Range of Analog-Tuned Electrostatic Actuators, J. Microelectromech. Sys., 1999, vol. 8, no. 4, pp. 497–505.

    Article  Google Scholar 

  39. Dragunov, V.P. and Ostertak, D.I., Electrostatic Interactions in MEMS with Plane-Parallel Electrodes. Pt. 1. Calculation of Capacities, Nano mikrosis. tekhn., 2010, no. 7. pp. 37–41.

  40. Dragunov, V.P. and Ostertak, D.I., Electrostatic Interactions in MEMS with Plane-Parallel Electrodes. Pt. 1. Calculation of Electrostatic Forces, Nano mikrosis. tekhn., 2010, no. 8. pp. 40–47.

  41. Lee, K.B., Pisano, A.P., and Lin, L., Nonlinear Behaviors of a Comb Drive Actuator Under Electrically Induced Tensile and Compressive Stresses, J. Micromech. Microeng., 2007, vol. 17, no. 3, pp. 557–566.

    Article  Google Scholar 

  42. Legtenberg, R., Groeneveld, A.W., and Elwenspoek, M., Comb-Drive Actuators for Large Displacements, J. Micromech. Microeng., 1996, vol. 6, no. 3, pp. 320–329.

    Article  Google Scholar 

  43. Dong, J., Mukhopadhay, D., and Ferreira, P.M., Design, Fabrication and Testing of a Silicon-On-Insulator (SOI) MEMS Parallel-Kinematics XY Stage, J. Micromech. Microeng., 2007, vol. 17, no. 6, pp. 1154–1161.

    Article  Google Scholar 

  44. Chan, E.K. and Dutton, R.W., Electrostatic Micromechanical Actuator with Extended Range of Travel, J. Microelectromech. Sys., 1999, vol. 9, no. 3, pp. 321–328.

    Article  Google Scholar 

  45. Hu, B., Wu, M., Fu, Z., and Zhao, Y., A Bio-Inspired Suction Cup Actuated by a Differential Shape Memory Alloy Actuator, Huazhong Keji Daxue Xuebao. Ziran Kexue Ban., 2010, vol. 38, no. 7, pp. 16–19.

    MATH  Google Scholar 

  46. Que, L., Park, J.S., and Gianchandani, Y.B., Bent-Beam Electrothermal Actuators. Part 1. Single Beam and Cascaded Devices, J. Microelectromech. Sys., 2001, vol. 10, no. 2, pp. 247–254.

    Article  Google Scholar 

  47. Lau, G.-K., Goosen, J.F.L., van Keulen, F., Duc, T.C., and Sarro, P.M., Polymeric Thermal Microactuator with Embedded Silicon Skeleton. Pt. 1. Design and Analysis, J. Microelectromech. Sys., 2008, vol. 17, no. 4, pp. 809–822.

    Article  Google Scholar 

  48. Duc, T.C., Lau, G.-K., and Sarro, P.M., Polymeric Thermal Microactuator with Embedded Silicon Skeleton. Pt. 2. Fabrication, Characterization, and Application for 2-DOF Microgripper, J. Microelectromech. Sys., 2008, vol. 17, no. 4, pp. 823–831.

    Article  Google Scholar 

  49. Hickey, R., Kujath, M., and Hubbard, T., Heat Transfer Analysis and Optimization of Two-Beam Microelectromechanical Thermal Actuator, J. Vacuum Sci. Tech. A., 2002, vol. 20, no. 3, pp. 971–974.

    Article  Google Scholar 

  50. Huang, Q. and Lee, N.K.S., Analysis and Design of Polysilicon Thermal Flexure Actuator, J. Micromech. Microeng., 1999, vol. 9, no. 1, pp. 64–70.

    Article  MathSciNet  Google Scholar 

  51. Lin, L. and Chiao, M., Electrothermal Responses of Lineshape Microstructures, Sens. Actuators A., 1996, vol. 55, no. 1, pp. 35–41.

    Article  Google Scholar 

  52. Kuang, Y., Huang, Q.A., and Lee, N.K.S., Numerical Simulation of Polysilicon Thermal Flexure Actuator, Microsys. Tech., 2002, vol. 8, no. 1, pp. 17–21.

    Article  Google Scholar 

  53. Mankame, N.D. and Ananthasuresh, G.K., Comprehensive Thermal Modeling and Characterization of an Electro-Thermal-Compliant Microactuator, J. Micromech. Microeng., 2001, vol. 11, no. 5, pp. 452–462.

    Article  Google Scholar 

  54. Yan, D., Khajepour, A., and Mansour, R., Design and Modeling of a MEMS Bidirectional Vertical Thermal Actuator, J. Micromech. Microeng., 2004, vol. 14, no. 7, pp. 841–850.

    Article  Google Scholar 

  55. Moulton, T. and Ananthasuresh, G., Micromechanical Devices with Embedded Electro-Thermal Compliant Actuation, Sens. Actuators A., 2001, vol. 90, nos. 1–2, pp. 38–48.

    Google Scholar 

  56. Carlson, K., Andersen, K.N., Eichhorn, V., Petersen, D.H., Molhave, K., Bu, I.Y.Y., Teo, K.V.K., Milne, W.I., Fatikow, S., and Boggild, P., A Carbon Nanofibre Scanning Probe Assembled Using An Electrothermal Microgripper, Nanotech., 2007, vol. 18, no. 34, pp. 345–501.

    Article  Google Scholar 

  57. Li, L. and Uttamchandani, D., Modified Asymmetric Micro-Electrothermal Actuator: Analysis and Experimentation, J. Micromech. Microeng., 2004, vol. 14, no. 12, pp. 1734–1741.

    Article  Google Scholar 

  58. Zhu, Y., Corigliano, A., and Espinosa, N.D., A Thermal Actuator for Nanoscale in situ Microscopy Testing: Design and Characterization, J. Micromech. Microeng., 2006, vol. 16, no. 2, pp. 242–253.

    Article  Google Scholar 

  59. Mutlu, R. and Alici, G.A., Multistable Linear Actuation Mechanism Based on Artificial Muscles, Trans. ASME. J. Mech. Des., 2010, vol. 132, no. 11, p. 111001.

    Article  Google Scholar 

  60. Rakotondrabe, M. and Ivan, I.A., Development and Dynamic Modeling of a New Hybrid Thermopiezoelectric Microactuator, IEEE Trans. Robot., 2010, vol. 26, no. 6, pp. 1077–1085.

    Article  Google Scholar 

  61. Nguyen, N.-T., Ho S.-S., Low C. L.-N., A Polymeric Microgripper with Integrated Thermal Actuators, J. Micromech. Microeng., 2004, vol. 14, no. 7, pp. 674–699.

    Article  Google Scholar 

  62. Prasanna, S. and Spearing, S.M., Material Selection and Design of Microelectrothermal Bimaterial Actuators, J. Microelectromech. Sys., 2007, vol. 16, no. 2, pp. 248–259.

    Article  Google Scholar 

  63. Srikar, V.T. and Spearing, S.M., Material Selection for Microfabricated Electrostatic Actuators, Sens. Actuators A., 2003, vol. 102, no. 3, pp. 279–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.M. Petrina, 2011, published in Nauchno-Tekhnicheskaya Informatsiya, Seriya 2, 2011, No. 12, pp. 8–22.

About this article

Cite this article

Petrina, A.M. Physical approaches to the design of microactuators for micro- and nanopositioning: The information aspect. Autom. Doc. Math. Linguist. 45, 301–315 (2011). https://doi.org/10.3103/S0005105511060069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0005105511060069

Keywords

Navigation