Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 12, 2018

Cracking novel shared targets between epilepsy and Alzheimer’s disease: need of the hour

  • Nitika Garg , Rupa Joshi and Bikash Medhi EMAIL logo

Abstract

Epilepsy and Alzheimer’s disease (AD) are interconnected. It is well known that seizures are linked with cognitive impairment, and there are various shared etiologies between epilepsy and AD. The connection between hyperexcitability of neurons and cognitive dysfunction in the progression of AD or epileptogenesis plays a vital role for improving selection of treatment for both diseases. Traditionally, seizures occur less frequently and in later stages of age in patients with AD which in turn implies that neurodegeneration causes seizures. The role of seizures in early stages of pathogenesis of AD is still an issue to be resolved. So, it is well timed to analyze the common pathways involved in pathophysiology of AD and epilepsy. The present review focuses on similar potential underlying mechanisms which may be related to the causes of seizures in epilepsy and cognitive impairment in AD. The proposed review will focus on many possible newer targets like abnormal expression of various enzymes like GSK-3β, PP2A, PKC, tau hyperphosphorylation, MMPs, caspases, neuroinflammation and oxidative stress associated with number of neurodegenerative diseases linked with epilepsy. The brief about the prospective line of treatment of both diseases will also be discussed in the present review.

References

Albani, D., Polito, L., Signorini, A., and Forloni, G. (2010). Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 36, 370–376.10.1002/biof.118Search in Google Scholar

Ali, I., Chugh, D., and Ekdahl, C.T. (2015). Role of fractalkine-CX3CR1 pathway in seizure-induced microglial activation, neurodegeneration, and neuroblast production in the adult rat brain. Neurobiol. Dis. 74, 194–203.10.1016/j.nbd.2014.11.009Search in Google Scholar

Alyu, F. and Dikmen, M. (2017). Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr. 29, 1–16.10.1017/neu.2016.47Search in Google Scholar

Amatniek, J.C., Hauser, W.A., DelCastillo-Castaneda, C., Jacobs, D.M., Marder, K., Bell, K., Albert, M., Brandt, J., and Stern, Y. (2006). Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia 47, 867–872.10.1111/j.1528-1167.2006.00554.xSearch in Google Scholar

Andrzejczak, D. (2011). Epilepsy and pro-inflammatory cytokines. Immunomodulating properties of antiepileptic drugs. Neurol. Neurochir. Pol. 45, 275–285.10.1016/S0028-3843(14)60080-3Search in Google Scholar

Angelucci, F., De Bartolo, P., Gelfo, F., Foti, F., Cutuli, D., Bossu, P., Caltagirone, C., and Petrosini, L. (2009). Increased concentrations of nerve growth factor and brain-derived neurotrophic factor in the rat cerebellum after exposure to environmental enrichment. Cerebellum 8, 499–506.10.1007/s12311-009-0129-1Search in Google Scholar PubMed

Anticevic, A., Cole, M.W., Murray, J.D., Corlett, P.R., Wang, X.J., and Krystal, J.H. (2012). The role of default network deactivation in cognition and disease. Trends Cogn. Sci. 16, 584–592.10.1016/j.tics.2012.10.008Search in Google Scholar PubMed PubMed Central

Armon, C., Peterson, G.W., and Liwnicz, B.H. (2000). Alzheimer’s disease underlies some cases of complex partial status epilepticus. J. Clin. Neurophysiol. 17, 511–518.10.1097/00004691-200009000-00011Search in Google Scholar PubMed

Azab, S.F., Abdalhady, M.A., Almalky, M.A., Amin, E.K., Sarhan, D.T., Elhindawy, E.M., Allah, M.A., Elhewala, A.A., Salam, M.M., Hashem, M.I., et al. (2016). Serum and CSF adiponectin, leptin, and interleukin 6 levels as adipocytokines in Egyptian children with febrile seizures: a cross-sectional study. Ital. J. Pediatr. 42, 38–45.10.1186/s13052-016-0250-ySearch in Google Scholar PubMed PubMed Central

Bahna, S.G., Sathiyapalan, A., Foster, J.A., and Niles, L.P. (2014). Regional upregulation of hippocampal melatonin MT2 receptors by valproic acid: therapeutic implications for Alzheimer’s disease. Neurosci. Lett. 576, 84–87.10.1016/j.neulet.2014.05.056Search in Google Scholar PubMed

Bakker, A., Krauss, G.L., Albert, M.S., Speck, C.L., Jones, L.R., Stark, C.E., Yassa, M.A., Bassett, S.S., Shelton, A.L., and Gallagher, M. (2012). Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474.10.1016/j.neuron.2012.03.023Search in Google Scholar PubMed PubMed Central

Bang, S.R., Ambavade, S.D., Jagdale, P.G., Adkar, P.P., Waghmare, A.B., and Ambavade, P.D. (2015). Lacosamide reduces HDAC levels in the brain and improves memory: potential for treatment of Alzheimer’s disease. Pharmacol. Biochem. Behav. 134, 65–69.10.1016/j.pbb.2015.04.011Search in Google Scholar PubMed

Baranano, K.W. and Hartman, A.L. (2008). The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr. Treat. Options Neurol. 10, 410–419.10.1007/s11940-008-0043-8Search in Google Scholar PubMed PubMed Central

Barnham, K.J., Masters, C.L., and Bush, A.I. (2004). Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214.10.1038/nrd1330Search in Google Scholar PubMed

Baviera, M., Roncaglioni, M.C., Tettamanti, M., Vannini, T., Fortino, I., Bortolotti, A., Merlino, L., and Beghi, E. (2017). Diabetes mellitus: a risk factor for seizures in the elderly – a population-based study. Acta Diabetol. doi:10.1007/s00592-017-1011-0. [Epub ahead of print].10.1007/s00592-017-1011-0Search in Google Scholar PubMed

Bell, R.D. and Zlokovic, B.V. (2009). Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 118, 103–113.10.1007/s00401-009-0522-3Search in Google Scholar PubMed PubMed Central

Bender, A.C., Morse, R.P., Scott, R.C., Holmes, G.L., and Lenck-Santini, P.P. (2012). SCN1A mutations in Dravet syndrome: impact of interneuron dysfunction on neural networks and cognitive outcome. Epilepsy Behav. 23, 177–186.10.1016/j.yebeh.2011.11.022Search in Google Scholar PubMed PubMed Central

Bernardi, S., Scaldaferri, N., Vanacore, N., Trebbastoni, A., Francia, A., D’Amico, A., and Prencipe, M. (2010). Seizures in Alzheimer’s disease: a retrospective study of a cohort of outpatients. Epileptic Disord. 12, 16–21.10.1684/epd.2010.0290Search in Google Scholar PubMed

Bhatti, A.B., Usman, M., Ali, F., and Satti, S.A. (2016). Vitamin supplementation as an adjuvant treatment for Alzheimer’s disease. J. Clin. Diagn. Res. 10, OE07–OE11.10.7860/JCDR/2016/20273.8261Search in Google Scholar PubMed PubMed Central

Bianchetti, A., Rozzini, R., and Trabucchi, M. (2003). Effects of acetyl-L-carnitine in Alzheimer’s disease patients unresponsive to acetylcholinesterase inhibitors. Curr. Med. Res. Opin. 19, 350–353.10.1080/03007995.2020.12102584Search in Google Scholar

Boison, D. (2016). The biochemistry and epigenetics of epilepsy: focus on adenosine and glycine. Front. Mol. Neurosci. 9, 26–32.10.3389/fnmol.2016.00026Search in Google Scholar PubMed PubMed Central

Boison, D. and Aronica, E. (2015). Comorbidities in neurology: is adenosine the common link? Neuropharmacology 97, 18–34.10.1016/j.neuropharm.2015.04.031Search in Google Scholar PubMed PubMed Central

Bourinet, E., Soong, T.W., Sutton, K., Slaymaker, S., Mathews, E., Monteil, A., Zamponi, G.W., Nargeot, J., and Snutch, T.P. (1999). Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat. Neurosci. 2, 407–415.10.1038/8070Search in Google Scholar PubMed

Braun, K.P. (2017). Preventing cognitive impairment in children with epilepsy. Curr. Opin. Neurol. 30, 140–147.10.1097/WCO.0000000000000424Search in Google Scholar PubMed

Brigo, F., Igwe, S.C., and Del Felice, A. (2016). Melatonin as add-on treatment for epilepsy. Cochrane Database Syst Rev. 11, CD006967.10.1002/14651858.CD006967.pub3Search in Google Scholar PubMed

Brooks, C., Wei, Q., Cho, S.G., and Dong, Z. (2009). Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285.10.1172/JCI37829Search in Google Scholar PubMed PubMed Central

Cabrejo, L., Guyant-Marechal, L., Laquerriere, A., Vercelletto, M., De la Fourniere, F., Thomas-Anterion, C., Verny, C., Letournel, F., Pasquier, F., Vital, A., et al. (2006). Phenotype associated with APP duplication in five families. Brain 129, 2966–2976.10.1093/brain/awl237Search in Google Scholar PubMed

Carter, D.S., Harrison, A.J., Falenski, K.W., Blair, R.E., and DeLorenzo, R.J. (2008). Long-term decrease in calbindin-D28K expression in the hippocampus of epileptic rats following pilocarpine-induced status epilepticus. Epilepsy Res. 79, 213–223.10.1016/j.eplepsyres.2008.02.006Search in Google Scholar PubMed PubMed Central

Chen, Y., Zhang, J., Zhang, B., and Gong, C.X. (2016). Targeting insulin signaling for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem. 16, 485–492.10.2174/1568026615666150813142423Search in Google Scholar PubMed

Cheng, X.L. and Li, M.K. (2014). Effect of topiramate on apoptosis-related protein expression of hippocampus in model rats with Alzheimers disease. Eur. Rev. Med. Pharmacol. Sci. 18, 761–768.Search in Google Scholar

Cheng, T., Petraglia, A.L., Li, Z., Thiyagarajan, M., Zhong, Z., and Wu, Z. (2006). Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat. Med. 12, 1278–1285.10.1038/nm1498Search in Google Scholar PubMed

Coppieters, N., Dieriks, B.V., Lill, C., Faull, R.L., Curtis, M.A., and Dragunow, M. (2014). Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol. Aging 35, 1334–1344.10.1016/j.neurobiolaging.2013.11.031Search in Google Scholar PubMed

Deane, R., Du Yan, S., Submamaryan, R.K., LaRue, B., Jovanovic, S., and Hogg, E. (2003). RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907–913.10.1038/nm890Search in Google Scholar PubMed

Decressac, M., Wright, B., David, B., Tyers, P., Jaber, M., Barker, R.A., and Gaillard, A. (2011). Exogenous neuropeptide Y promotes in vivo hippocampal neurogenesis. Hippocampus 21, 233–238.10.1002/hipo.20765Search in Google Scholar PubMed

Deepmala, Slattery. J., Kumar, N., Delhey, L., Berk, M., Dean, O., Spielholz, C., and Frye, R. (2015). Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci. Biobehav. Rev. 55, 294–321.10.1016/j.neubiorev.2015.04.015Search in Google Scholar PubMed

Demuro, A., Parker, I., and Stutzmann, G.E. (2010). Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem. 285, 12463–12648.10.1074/jbc.R109.080895Search in Google Scholar PubMed PubMed Central

Devi, L. and Ohno, M. (2013). Effects of levetiracetam, an antiepileptic drug, on memory impairments associated with aging and Alzheimer’s disease in mice. Neurobiol. Learn. Mem. 102, 7–11.10.1016/j.nlm.2013.02.001Search in Google Scholar PubMed

DeVos, S.L., Goncharoff, D.K., Chen, G., Kebodeaux, C.S., Yamada, K., Stewart, F.R., Schuler, D.R., Maloney, S.E., Wozniak, D.F., Rigo, F., et al. (2013). Antisense reduction of tau in adult mice protects against seizures. J. Neurosci. 33, 12887–12897.10.1523/JNEUROSCI.2107-13.2013Search in Google Scholar PubMed PubMed Central

Diaz, J.C., Simakova, O., Jacobson, K.A., Arispe, N., and Pollard, H.B. (2009). Small molecule blockers of the Alzheimer Abeta calcium channel potently protect neurons from Abeta cytotoxicity. Proc. Natl. Acad. Sci. USA 106, 3348–3353.10.1073/pnas.0813355106Search in Google Scholar PubMed PubMed Central

Doeser, A., Dickhof, G., Reitze, M., Uebachs, M., Schaub, C., Pires, N.M., Bonifacio, M.J., Soares-da-Silva, P., and Beck, H. (2015). Targeting pharmacoresistant epilepsy and epileptogenesis with a dual-purpose antiepileptic drug. Brain 138, 371–387.10.1093/brain/awu339Search in Google Scholar PubMed

Dupuis, N., Matagne, A., Staelens, L., Dournaud, P., Desnous, B., Gressens, P., and Auvin, S. (2015). Anti-ictogenic and antiepileptogenic properties of brivaracetam in mature and immature rats. Epilepsia 56, 800–805.10.1111/epi.12973Search in Google Scholar PubMed

Ehninger, D., Han, S., Shilyansky, C., Zhou, Y., Li, W., Kwiatkowski, D.J., Ramesh, V., and Silva, A.J. (2008). Reversal of learning deficits in a TSC2+/− mouse model of tuberous sclerosis. Nat. Med. 14, 843–838.10.1038/nm1788Search in Google Scholar PubMed PubMed Central

Emilsson, L., Saetre, P., and Jazin, E. (2006). Alzheimer’s disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signaling. Neurobiol. Dis. 21, 618–625.10.1016/j.nbd.2005.09.004Search in Google Scholar PubMed

Feng, B., Tang, Y., and Chen, B. (2016). Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci. Rep. 6, 21931–21941.10.1038/srep21931Search in Google Scholar PubMed PubMed Central

Friedman, D., Honig, L.S., and Scarmeas, N. (2012). Seizures and epilepsy in Alzheimer’s disease. CNS Neurosci. Ther. 18, 285–294.10.1111/j.1755-5949.2011.00251.xSearch in Google Scholar PubMed PubMed Central

Ghasemi, M., Zendehbad, B., Zabihi, H., Hosseini, M., Hadjzadeh, M.A., and Hayatdavoudi, P. (2016). Beneficial effect of leptin on spatial learning and memory in streptozotocin-induced diabetic rats. Balkan Med. J. 33, 102–107.10.5152/balkanmedj.2015.15084Search in Google Scholar PubMed PubMed Central

Go, M., Kou, J., Lim, J.E., Yang, J., and Fukuchi, K.I. (2016). Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer’s mouse model: implication of TLR4 signaling in disease progression. Biochem. Biophys. Res. Commun. 479, 331–337.10.1016/j.bbrc.2016.09.073Search in Google Scholar PubMed PubMed Central

Gomez Ravetti, M.G., Rosso, O.A., Berretta, R., and Moscato, P. (2010). Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus’ gene expression profiles in Alzheimer’s disease. PLoS One 5, e10153-94.10.1371/journal.pone.0010153Search in Google Scholar PubMed PubMed Central

Goodison, W.V., Vincenza, F., and Kehoe, P.G. (2012). Calcium channel blockers and Alzheimer’s disease: potential relevance in treatment strategies of metabolic syndrome. J. Alz. Dis. 30, S269–S282.10.3233/JAD-2012-111664Search in Google Scholar PubMed

Gueli, M.C. and Taibi, G. (2013). Alzheimer’s disease: amino acid levels and brain metabolic status. Neurol. Sci. 34, 1575–1579.10.1007/s10072-013-1289-9Search in Google Scholar PubMed

Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., and Majounie, E. (2013). Alzheimer Genetic Analysis Group. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127.10.1056/NEJMoa1211851Search in Google Scholar PubMed PubMed Central

Hamid, H., Ettinger, A.B., and Mula, M. (2011). Anxiety symptoms in epilepsy: salient issues for future research. Epilepsy Behav. 22, 63–68.10.1016/j.yebeh.2011.04.064Search in Google Scholar PubMed

Harte-Hargrove, L., MacLusky, N.J., and Scharfman, H.E. (2013). BDNF-estrogen interactions in hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 239, 46–66.10.1016/j.neuroscience.2012.12.029Search in Google Scholar PubMed PubMed Central

Haussmann, R., Mayer, T., Schrempf, W., and Donix, M. (2017). Alzheimer’s disease and epilepsy. Nervenarzt. 88, 1003–1009.10.1007/s00115-017-0286-2Search in Google Scholar PubMed

Hebert, S.S., Horre, K., Nicolai, L., Papadopoulou, A.S., Mandemakers, W., Silahtaroglu, A.N., Kauppinen, S., Delacourte, A., and De Strooper, B. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. USA 105, 6415–6420.10.1073/pnas.0710263105Search in Google Scholar PubMed PubMed Central

Henshall, D.C. and Kobow, K. (2015). Epigenetics and epilepsy. Cold Spring Harb. Perspect. Med. 5, 1–17.10.1101/cshperspect.a022731Search in Google Scholar PubMed PubMed Central

Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J.C., Carrasquillo, M.M., Abraham, R., Hamshere, M.L., Pahwa, J.S., Moskvina, V., et al. Alzheimer’s Disease Neuroimaging Initiative, CHARGE Consortium, and EADI1 Consortium. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 43, 429–435.10.1038/ng.803Search in Google Scholar PubMed PubMed Central

Hu, X., Zhou, X., He, W., Yang, J., Xiong, W., Wong, P., Wilson, C.G., and Yan, R. (2010). BACE1 deficiency causes altered neuronal activity and neurodegeneration. J. Neurosci. 30, 8819–8829.10.1523/JNEUROSCI.1334-10.2010Search in Google Scholar PubMed PubMed Central

Huang, W.J., Tian, F.F., Chen, J.M., Guo, T.H., Ma, Y.F., Fang, J., Dang, J., and Song, M.Y. (2013). GSK-3β may be involved in hippocampal mossy fiber sprouting in the pentylenetetrazole-kindling model. Mol. Med. Rep. 8, 1337–1342.10.3892/mmr.2013.1660Search in Google Scholar PubMed

Ickes, B.R., Pham, T.M., Sanders, L.A., Albeck, D.S., Mohammed, A.H, and Granholm, A.C. (2000). Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp. Neurol. 164, 45–52.10.1006/exnr.2000.7415Search in Google Scholar PubMed

Iori, V., Iyer, A.M., Ravizza, T., Beltrame, L., Paracchini, L., Marchini, S., Cerovic, M., Hill, C., Ferrari, M., Zucchetti, M., et al. (2017). Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol. Dis. 99, 12–23.10.1016/j.nbd.2016.12.007Search in Google Scholar PubMed

Iqbal, K., Liu, F., Gong, C.X., Alonso, A.D.C., and Grundke-Iqbal, I. (2009). Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 118, 53–69.10.1007/s00401-009-0486-3Search in Google Scholar PubMed PubMed Central

Islam, B.U. and Tabrez, S. (2017). Management of Alzheimer’s disease – an insight of the enzymatic and other novel potential targets. Int. J. Biol. Macromol. 97, 700–709.10.1016/j.ijbiomac.2017.01.076Search in Google Scholar PubMed

Ittner, L.M. and Gotz, J. (2010). Amyloid-band tau – a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–72.Search in Google Scholar

Jayadev, S., Leverenz, J.B., Steinbart, E., Stahl, J., Klunk, W., Yu, C, and Bird, T.D. (2010). Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. Brain 133, 1143–1154.10.1093/brain/awq033Search in Google Scholar PubMed PubMed Central

Jones, N.C., Nguyen, T., Corcoran, N.M., Velakoulis, D., Chen, T., Grundy, R., O’Brien, T.J., and Hovens, C.M. (2012). Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol. Dis. 45, 897–901.10.1016/j.nbd.2011.12.005Search in Google Scholar PubMed

Kanner, A.M. (2009). Psychiatric issues in epilepsy: the complex relation of mood, anxiety disorders, and epilepsy. Epilepsy Behav. 15, 83–87.10.1016/j.yebeh.2009.02.034Search in Google Scholar PubMed

Kharatmal, S.B., Singh, J.N., and Sharma, S.S. (2015). Rufinamide improves functional and behavioral deficits via blockade of tetrodotoxin-resistant sodium channels in diabetic neuropathy. Curr. Neurovasc. Res. 12, 262–268.10.2174/1567202612666150603130402Search in Google Scholar PubMed

Kim, D.Y., Carey, B.W., Wang, H., Ingano, L.A., Binshtok, A.M., Wertz, M.H., Pettingell, W.H., He, P., Lee, V.M., Woolf, C.J., et al. (2007). BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat. Cell Biol. 9, 755–764.10.1038/ncb1602Search in Google Scholar PubMed PubMed Central

Kim, Y., Wilkins, K.M., and Tampi, R.R. (2008). Use of gabapentin in the treatment of behavioural and psychological symptoms of dementia: a review of the evidence. Drugs Aging 25, 187–196.10.2165/00002512-200825030-00002Search in Google Scholar PubMed

Kobayashi, D., Zeller, M., Cole, T., Buttini, M., McConlogue, L., Sinha, S., Freedman, S., Morris, R.G., and Chen, K.S. (2008). BACE1 gene deletion: impact on behavioral function in a model of Alzheimer’s disease. Neurobiol. Aging 29, 861–873.10.1016/j.neurobiolaging.2007.01.002Search in Google Scholar PubMed

Kohli, M.A., John-Williams, K., Rajbhandary, R., Naj, A., Whitehead, P., and Hamilton, K. (2013). Repeat expansions in the C9ORF72 gene contribute to Alzheimer disease in Caucasians. Neurobiol. Aging 34, 1519.e5–1519.e12.10.1016/j.neurobiolaging.2012.10.003Search in Google Scholar PubMed PubMed Central

Korotkov, A.G., Muzalevskaya, D.S., and Kolokolov, O.V. (2016). A role of antioxidants in the complex treatment of epilepsy. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 116, 44–48.10.17116/jnevro20161169244-48Search in Google Scholar PubMed

Kramer, T., Schmidt, B., and Lo Monte, F. (2012). Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models. Int. J. Alzheimer’s Dis. 2012, 1–32.10.1155/2012/381029Search in Google Scholar PubMed PubMed Central

Kumar, H., Katyal, J., and Gupta, Y.K. (2015). Low dose zinc supplementation beneficially affects seizure development in experimental seizure models in rats. Biol. Trace Elem. Res. 163, 208–216.10.1007/s12011-014-0181-7Search in Google Scholar PubMed

Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier-Boley, B., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458.10.1038/ng.2802Search in Google Scholar PubMed PubMed Central

Larner, A.J. (2010). Epileptic seizures in AD patients. Neuromol. Med. 12, 71–77.10.1007/s12017-009-8076-zSearch in Google Scholar PubMed

Larner, A.J. (2011). Presenilin-1 mutation Alzheimer’s disease: a genetic epilepsy syndrome? Epilepsy Behav. 21, 20–22.10.1016/j.yebeh.2011.03.022Search in Google Scholar PubMed

Lazarczyk, M.J., Hof Patrick, R., Constantin, B., and Panteleimon, G. (2012). Preclinical Alzheimer disease: identification of cases at risk among cognitively intact older individuals. BMC Med. 10, 127–139.10.1186/1741-7015-10-127Search in Google Scholar PubMed PubMed Central

Lee, C.Y., Jaw, T., Tseng, H.C., Chen, I.C., and Liou, H.H. (2012). Lovastatin modulates glycogen synthase kinase-3β pathway and inhibits mossy fiber sprouting after pilocarpine-induced status epilepticus. PLoS One 7, e38789.10.1371/journal.pone.0038789Search in Google Scholar PubMed PubMed Central

Leppik, I.E. and Birnbaum, A.K. (2010). Epilepsy in the elderly. Ann. N.Y. Acad. Sci. 1184, 208–224.10.1111/j.1749-6632.2009.05113.xSearch in Google Scholar PubMed PubMed Central

Letra, L., Santana, I., and Seiça, R. (2014). Obesity as a risk factor for Alzheimer’s disease: the role of adipocytokines. Metab. Brain Dis. 29, 563–568.10.1007/s11011-014-9501-zSearch in Google Scholar PubMed

Levin, E.D., Bushnell, P.J., and Rezvani, A.H. (2011). Attention-modulating effects of cognitive enhancers. Pharmacol. Biochem. Behav. 99, 146–154.10.1016/j.pbb.2011.02.008Search in Google Scholar PubMed PubMed Central

Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Jondro, P.D., Schmidt, S.D., Wang, K., et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977.10.1126/science.7638622Search in Google Scholar PubMed

Levy, N., Milikovsky, D.Z., Baranauskas, G., Vinogradov, E., David, Y., Ketzef, M., Abutbul, S., Weissberg, I., Kamintsky, L., Fleidervish, I., et al. (2015). Differential TGF-β signaling in glial subsets underlies IL-6-mediated epileptogenesis in mice. J. Immunol. 195, 1713–1722.10.4049/jimmunol.1401446Search in Google Scholar PubMed

Lewerenz, J. and Maher, P. (2015). Chronic glutamate toxicity in neurodegenerative diseases – what is the evidence? Front. Neurosci. 9, 469–488.10.3389/fnins.2015.00469Search in Google Scholar PubMed PubMed Central

Lewis, M.H. (2004). Environmental complexity and central nervous system development and function. Ment. Retard. Dev. Disabil. Res. Rev. 10, 91–95.10.1002/mrdd.20017Search in Google Scholar PubMed

Li, L., Zhang, S., Zhang, X., Li, T., Tang, Y., Liu, H., Yang, W., and Le, W. (2013). Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 10, 433–441.10.2174/1567205011310040008Search in Google Scholar PubMed

Li, Y., Sun, H., Chen, Z., Xu, H., Bu, G., and Zheng, H. (2016). Implications of GABAergic neurotransmission in Alzheimer’s disease. Front. Aging Neurosci. 8, 31–42.10.3389/fnagi.2016.00031Search in Google Scholar PubMed PubMed Central

Lichtenthaler, S.F. (2012). Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Curr. Alzheimer Res. 9, 165–177.10.2174/156720512799361655Search in Google Scholar PubMed

Liu, Y.J. and Chern, Y. (2015). AMPK-mediated regulation of neuronal metabolism and function in brain diseases. J. Neurogenet. 29, 50–58.10.3109/01677063.2015.1067203Search in Google Scholar PubMed

Liu, S.J., Zheng, P., Wright, D.K., Dezsi, G., Braine, E., Nguyen, T., Corcoran, N.M., Johnston, L.A., Hovens, C.M., Mayo, J.N., et al. (2016). Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain 139, 1919–1938.10.1093/brain/aww116Search in Google Scholar PubMed

Liu, C., Russin, J., Heck, C., Kawata, K., Adiga, R., Yen, W., Lambert, J., Stear, B., Law, M., Marquez, Y., et al. (2017). Dysregulation of PINCH signaling in mesial temporal epilepsy. J. Clin. Neurosci. 36, 43–52.10.1016/j.jocn.2016.10.012Search in Google Scholar PubMed PubMed Central

Loef, M., von Stillfried, N., and Walach, H. (2012). Zinc diet and Alzheimer’s disease: a systematic review. Nutr. Neurosci. 15, 2–12.10.1179/1476830512Y.0000000010Search in Google Scholar PubMed

Long, Z., Zheng, M., Zhao, L., Xie, P., Song, C., Chu, Y., Song, W., and He, G. (2013). Valproic acid attenuates neuronal loss in the brain of APP/PS1 double transgenic Alzheimer’s disease mice model. Curr. Alzheimer Res. 10, 261–269.10.2174/1567205011310030005Search in Google Scholar PubMed

Long, Z.M., Zhao, L., Jiang, R., Wang, K.J., Luo, S.F., Zheng, M., Li, X.F., and He, G.Q. (2015). Valproic acid modifies synaptic structure and accelerates neurite outgrowth via the glycogen synthase kinase-3β signaling pathway in an Alzheimer’s disease model. CNS Neurosci. Ther. 21, 887–897.10.1111/cns.12445Search in Google Scholar PubMed PubMed Central

Lu, H., Liu, X., Deng, Y., and Qing, H. (2013). DNA methylation, a hand behind neurodegenerative diseases. Front. Aging Neurosci. 5, 85–100.10.3389/fnagi.2013.00085Search in Google Scholar PubMed PubMed Central

Lyketsos, C.G., Carrillo, M.C., Ryan, J.M., Khachaturian, A.S., Trzepacz, P., Amatniek, J., Cedarbaum, J., Brashear, R., and Miller, D.S. (2011). Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 7, 532–539.10.1016/j.jalz.2011.05.2410Search in Google Scholar PubMed PubMed Central

Marsh, J., Bagol, S.H., Williams, R.S.B., Dickson, G., and Alifragis, P. (2017). Synapsin I phosphorylation is dysregulated by beta-amyloid oligomers and restored by valproic acid. Neurobiol. Dis. 106, 63–75.10.1016/j.nbd.2017.06.011Search in Google Scholar PubMed

Martinc, B., Grabnar, I., and Vovk, T. (2012). The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr. Neuropharmacol. 10, 328–343.10.2174/157015912804499447Search in Google Scholar

Masuda, N., Peng, Q., Li, Q., Jiang, M., Liang, Y., Wang, X., Zhao, M., Wang, W., Ross, C.A., and Duan, W. (2008). Tiagabine is neuroprotective in the N171-82Q and R6/2 mouse models of Huntington’s disease. Neurobiol. Dis. 30, 293–302.10.1016/j.nbd.2008.01.014Search in Google Scholar PubMed PubMed Central

Mathew, J., Paul, J., Nandhu, M.S, and Paulose, C.S. (2010). Bacopa monnieri and Bacoside-A for ameliorating epilepsy associated behavioral deficits. Fitoterapia 81, 315–322.10.1016/j.fitote.2009.11.005Search in Google Scholar PubMed

Mazhar, F., Malhi, S.M., and Simjee, S.U. (2017). Comparative studies on the effects of clinically used anticonvulsants on the oxidative stress biomarkers in pentylenetetrazole-induced kindling model of epileptogenesis in mice. J. Basic Clin. Physiol. Pharmacol. 28, 31–42.10.1515/jbcpp-2016-0034Search in Google Scholar PubMed

McCagh, J., Fisk, J.E., and Baker, G.A. (2009). Epilepsy, psychosocial and cognitive functioning. Epilepsy Res. 86, 1–14.10.1016/j.eplepsyres.2009.04.007Search in Google Scholar PubMed

McGuire, M.J. and Ishii, M. (2016). Leptin dysfunction and Alzheimer’s disease: evidence from cellular, animal, and human studies. Cell. Mol. Neurobiol. 36, 203–217.10.1007/s10571-015-0282-7Search in Google Scholar PubMed PubMed Central

Menendez, M. (2005). Down syndrome, Alzheimer’s disease and seizures. Brain Dev. 27, 246–252.10.1016/j.braindev.2004.07.008Search in Google Scholar PubMed

Michalak, Z., Lebrun, A., Di Miceli, M., Rousset, M.C., Crespel, A., Coubes, P., Henshall, D.C., Lerner-Natoli, M., and Rigau, V. (2012). IgG leakage may contribute to neuronal dysfunction in drug-refractory epilepsies with blood-brain barrier disruption. J. Neuropathol. Exp. Neurol. 71, 826–838.10.1097/NEN.0b013e31826809a6Search in Google Scholar PubMed

Millan, M.J., Agid, Y., Brune, M., Bullmore, E.T., Carter, C.S., Clayton, N.S., Connor, R., and Davis, S. (2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 11, 141–168.10.1038/nrd3628Search in Google Scholar PubMed

Miller-Delaney, S.F., Bryan, K., Das, S., McKiernan, R.C., Bray, I.M., Reynolds, J.P., Gwinn, R., Stallings, R.L., and Henshall, D.C. (2015). Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 138, 616–631.10.1093/brain/awu373Search in Google Scholar PubMed PubMed Central

Minkeviciene, R., Rheims, S., Dobszay, M.B., Zilberter, M., Hartikainen, J., Fulop, L., Penke, B., Zilberter, Y., Harkany, T., Pitkanen, A., et al. (2009). Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy. J. Neurosci. 29, 3453–3462.10.1523/JNEUROSCI.5215-08.2009Search in Google Scholar PubMed PubMed Central

Moncek, F., Duncko, R., Johansson, B.B., and Jezova, D. (2004). Effect of environment on stress related systems in rats. J. Neuroendocrinol. 16, 423–431.10.1111/j.1365-2826.2004.01173.xSearch in Google Scholar PubMed

Nagahara, A.H., Merrill, D.A., Coppola, G., Tsukada, S., Schroeder, B.E., Shaked, G.M., Wang, L., Blesch, A., Kim, A., Conner, J.M., et al. (2009). Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 15, 331–317.10.1038/nm.1912Search in Google Scholar PubMed PubMed Central

Nalivaeva, N.N., Belyaev, N.D., Lewis, D.I., Pickles, A.R., Makova, N.Z., Bagrova, D.I., Dubrovskaya, N.M., Plesneva, S.A., Zhuravin, I.A., and Turner, A.J. (2012). Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J. Mol. Neurosci. 46, 569–577.10.1007/s12031-011-9644-xSearch in Google Scholar PubMed

Noebels, J. (2011). A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 52 (Suppl. 1), 39–46.10.1111/j.1528-1167.2010.02909.xSearch in Google Scholar PubMed PubMed Central

Nygaard, H.B., Kaufman, A.C., Sekine-Konno, T., Huh, L.L., Going, H., Feldman, S.J., Kostylev, M.A., and Strittmatter, S.M. (2015). Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alzheimers Res. Ther. 7, 25–36.10.1186/s13195-015-0110-9Search in Google Scholar PubMed PubMed Central

Okada, T., Wada, J., Hida, K., Eguchi, J., Hashimoto, I., Baba, M., Yasuhara, A., Shikata, K., and Makino, H. (2006). Thiazolidinediones ameliorate diabetic nephropathy via cell cycle-dependent mechanisms. Diabetes. 55, 1666–1677.10.2337/db05-1285Search in Google Scholar PubMed

Olin, J.T., Fox, L.S., Pawluczyk, S., Taggart, N.A., and Schneider, L.S. (2001). A pilot randomize trial of carbamazepine for behavioral symptoms in treatment-resistant outpatients with Alzheimer disease. Am. J. Geriatr. Psychiatry. 9, 400–405.10.1097/00019442-200111000-00008Search in Google Scholar

Ono, K., Takasaki, J., Takahashi, R., Ikeda, T., and Yamada, M. (2013). Effects of antiparkinsonian agents on β-amyloid and α-synuclein oligomer formation in vitro. J. Neurosci. Res. 91, 1371–1381.10.1002/jnr.23256Search in Google Scholar PubMed

Ortiz, R.M., Karkkainen, I., Huovila, A.P., and Honkaniemi, J. (2005). ADAM9, ADAM10, and ADAM15 mRNA levels in the rat brain after kainic acid-induced status epilepticus. Brain Res. Mol. Brain Res. 137, 272–275.10.1016/j.molbrainres.2005.03.008Search in Google Scholar PubMed

Ozdemir, A.Y., Rom, I., Kovalevich, J., Yen, W., Adiga, R., Dave, R.S., and Langford, D. (2013). PINCH in the cellular stress response to tau-hyperphosphorylation. PloS One 8, e58232.10.1371/journal.pone.0058232Search in Google Scholar PubMed PubMed Central

Palmio, J., Vuolteenaho, K., Lehtimaki, K., Nieminen, R., Peltola, J., and Moilanen, E. (2016). CSF and plasma adipokines after tonic-clonic seizures. Seizure 39, 10–12.10.1016/j.seizure.2016.04.010Search in Google Scholar PubMed

Palop, J.J., Chin, J., Roberson, E.D., Wang, J., Thwin, M.T., Bien-Ly, N., Yoo, J., Ho, K., Yu, G.Q., Kreitzer, A., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711.10.1016/j.neuron.2007.07.025Search in Google Scholar PubMed PubMed Central

Paul, V., Reddy, L., Ekambaram, P. (2005). A reversal by L-arginine and sodium nitro-prusside of ageing-induced memory impairment in rats by increasing nitric oxide concentration in the hippocampus. Indian J. Physiol. Pharmacol. 49, 179–186.Search in Google Scholar

Paul, V. and Ekambaram, P. (2011). Involvement of nitric oxide in learning & memory processes. Indian J. Med. Res. 133, 471–478.Search in Google Scholar

Perluigi, M., Di Domenico, F., and Butterfield, D.A. (2015). mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol. Dis. 84, 39–49.10.1016/j.nbd.2015.03.014Search in Google Scholar PubMed

Pitsikas, N., Rigamonti, A.E., Cella, S.G., and Sakellaridis, N. (2005). The nitric oxide donor molsidomine antagonizes age-related memory deficit in rats. Neurobiol. Aging 26, 259–264.10.1016/j.neurobiolaging.2004.04.003Search in Google Scholar PubMed

Ramos-Miguel, A., Hercher, C., Beasley, C.L., Barr, A.M., Bayer, T.A., Falkai, P., Leurgans, S.E., Schneider, J.A., Bennett, D.A., and Honer, W.G. (2015). Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol. Neurodegener. 10, 65–82.10.1186/s13024-015-0061-4Search in Google Scholar PubMed PubMed Central

Randall, A.D., Witton, J., Booth, C., Hynes-Allen, A., and Brown, J.T. (2010). The functional neurophysiology of the amyloid precursor protein (APP) processing pathway. Neuropharmacology 59, 243–267.10.1016/j.neuropharm.2010.02.011Search in Google Scholar PubMed

Rao, S.C., Dove, G., Cascino, G.D., and Petersen, R.C. (2009). Recurrent seizures in patients with dementia: frequency, seizure types, and treatment outcome. Epilepsy Behav. 14, 118–120.10.1016/j.yebeh.2008.08.012Search in Google Scholar PubMed PubMed Central

Roane, D.M., Feinberg, T.E., Meckler, L., Miner, C.R., Scicutella, A., and Rosenthal, R.N. (2000). Treatment of dementia-associated agitation with gabapentin. J. Neuropsychiatry Clin. Neurosci. 12, 40–43.10.1176/jnp.12.1.40Search in Google Scholar PubMed

Roberson, E.D., Halabisky, B., Yoo, J.W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G.Q., et al. (2011). Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J. Neurosci. 31, 700–711.10.1523/JNEUROSCI.4152-10.2011Search in Google Scholar PubMed PubMed Central

Roseti, C., Fucile, S., Lauro, C., Martinello, K., Bertollini, C., and Esposito, V. (2013). Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy. Epilepsia 54, 1834–1844.10.1111/epi.12354Search in Google Scholar PubMed

Russo, E., Donato di Paola E., Gareri, P., Siniscalchi, A., Labate, A., Gallelli, L., Citraro, R., and De Sarro, G. (2013). Pharmacodynamic potentiation of antiepileptic drugs’ effects by some HMG-CoA reductase inhibitors against audiogenic seizures in DBA/2 mice. Pharmacol. Res. 70, 1–12.10.1016/j.phrs.2012.12.002Search in Google Scholar PubMed

Sada, N., Lee, S., Katsu, T., Otsuki, T., and Inoue, T. (2015). Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347, 1362–1367.10.1126/science.aaa1299Search in Google Scholar PubMed

San, Y.Z., Liu, Y., Zhang, Y., Shi, P.P., and Zhu, Y.L. (2015). Peroxisome proliferator-activated receptor-γ agonist inhibits the mammalian target of rapamycin signaling pathway and has a protective effect in a rat model of status epilepticus. Mol. Med. Rep. 12, 1877–1883.10.3892/mmr.2015.3641Search in Google Scholar PubMed PubMed Central

Sanchez, P.E., Zhu, L., Verret, L., Vossel, K.A., Orr, A.G., Cirrito, J.R., Devidze, N., Ho, K., Yu, G.Q., Palop, J.J., et al. (2012). Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. USA 109, E2895–E2903.10.1073/pnas.1121081109Search in Google Scholar PubMed PubMed Central

Scharfman, H.E. (2012). Alzheimer’s disease and epilepsy: insight from animal models. Future Neurol. 7, 177–192.10.2217/fnl.12.8Search in Google Scholar PubMed PubMed Central

Scharfman, H.E. and Chao, M.V. (2012). The entorhinal cortex in Alzheimer’s disease. Eur. J. Neurodegener. Dis. 1, 53–66.Search in Google Scholar

Scharfman, H.E. and MacLusky, N.J. (2008). Estrogen-growth factor interactions and their contributions to neurological disorders. Headache 48 (Suppl. 2), S77–S89.10.1111/j.1526-4610.2008.01200.xSearch in Google Scholar PubMed PubMed Central

Scichilone, J.M., Yarraguntla, K., Charalambides, A., Harney, J.P., and Butler, D. (2016). Environmental enrichment mitigates detrimental cognitive effects of ketogenic diet in weanling rats. J. Mol. Neurosci. 60, 1–9.10.1007/s12031-016-0753-4Search in Google Scholar PubMed

Shi, J.Q., Wang, B.R., Tian, Y.Y., Xu, J., Gao, L., Zhao, S.L., Jiang, T., Xie, H.G., and Zhang, Y.D. (2013). Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci. Ther. 19, 871–881.10.1111/cns.12144Search in Google Scholar PubMed PubMed Central

Shultz, S.R., Wright, D.K., Zheng, P., Stuchbery, R., Liu, S.J., Sashindranath, M., Medcalf, R.L., Johnston, L.A., Hovens, C.M., Jones, N.C., et al. (2015). Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 138, 1297–1313.10.1093/brain/awv053Search in Google Scholar PubMed PubMed Central

Simeone, T.A., Matthews, S.A., Samson, K.K., and Simeone, K.A. (2017). Regulation of brain PPARgamma2 contributes to ketogenic diet anti-seizure efficacy. Exp. Neurol. 287, 54–64.10.1016/j.expneurol.2016.08.006Search in Google Scholar PubMed PubMed Central

Song, J., Hur, B.E., Bokara, K.K., Yang, W., Cho, H.J., Park, K.A., Lee, W.T., Lee, K.M., and Lee, J.E. (2014). Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med. J. 55, 689–699.10.3349/ymj.2014.55.3.689Search in Google Scholar PubMed PubMed Central

Sontag, J.M., Nunbhakdi-Craig, V., Montgomery, L., Arning, E., Bottiglieri, T., and Sontag, E. (2008). Folate deficiency induces in vitro and mouse brain region-specific downregulation of Leucine carboxyl methyltransferase-1 and protein phosphatase 2A Bα subunit expression that correlate with enhanced tau phosphorylation. J. Neurosci. Nurs. 28, 11477–11487.10.1523/JNEUROSCI.2816-08.2008Search in Google Scholar PubMed PubMed Central

Sperk, G., Bellmann, R., Gruber, B., Greber, S., Marksteiner, J., Röder, C., and Rupp, E. (1996). Neuropeptide Y expression in animal models of temporal lobe epilepsy. Epilepsy Res. (Suppl.) 12, 197–203.Search in Google Scholar

Spilman, P., Podlutskaya, N., Hart, M.J., Debnath, J., Gorostiza, O., Bredesen, D., Richardson, A., Strong, R., and Galvan, V. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5, e9979-86.10.1371/journal.pone.0009979Search in Google Scholar PubMed PubMed Central

Stark, A.K., Pelvig, D.P., Jorgensen, A.M., Andersen, B.B., and Pakkenberg, B. (2005). Measuring morphological and cellular changes in Alzheimer’s dementia: a review emphasizing stereology. Curr. Alzheimer Res. 2, 449–481.10.2174/156720505774330528Search in Google Scholar PubMed

Suter, M.R., Kirschmann, G., Laedermann, C.J., Abriel, H., and Decosterd, I. (2013). Rufinamide attenuates mechanical allodynia in a model of neuropathic pain in the mouse and stabilizes voltage-gated sodium channel inactivated state. Anesthesiology. 118, 160–172.10.1097/ALN.0b013e318278cadeSearch in Google Scholar PubMed

Tan, Y., Deng, Y., and Qing, H. (2012). Calcium channel blockers and Alzheimer’s disease. Neural Regen. Res. 15, 137–140.Search in Google Scholar

Thebault-Dagher, F., Herba, C.M., Seguin, J.R., Muckle, G., Lupien, S.J., Carmant, L., Simard, M.N., Shapiro, G.D., Fraser, W.D., and Lippe, S. (2017). Age at first febrile seizure correlates with perinatal maternal emotional symptoms. Epilepsy Res. 135, 95–101.10.1016/j.eplepsyres.2017.06.001Search in Google Scholar PubMed

Thom, M., Liu, J.Y., Thompson, P., Phadke, R., Narkiewicz, M., Martinian, L., Marsdon, D., Koepp, M., Caboclo, L., Catarino, C.B., et al. (2011). Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study. Brain 134, 2969–2981.10.1093/brain/awr209Search in Google Scholar PubMed PubMed Central

Thundyil, J., Pavlovski, D., Sobey, C.G., and Arumugam, T.V. (2012). Adiponectin receptor signalling in the brain. Br. J. Pharmacol. 165, 313–327.10.1111/j.1476-5381.2011.01560.xSearch in Google Scholar PubMed PubMed Central

Tiwari, S.K., Seth, B., Agarwal, S., Yadav, A., Karmakar, M., Gupta, S.K., Choubey, V., Sharma, A., and Chaturvedi, R.K. (2015). Ethosuximide induces hippocampal neurogenesis and reverses cognitive deficits in an amyloid-β toxin-induced Alzheimer rat model via the phosphatidylinositol 3-kinase (PI3K)/Akt/Wnt/β-catenin pathway. J. Biol. Chem. 290, 28540–28558.10.1074/jbc.M115.652586Search in Google Scholar PubMed PubMed Central

Tracy, T.E. and Gan, L. (2017). Acetylated tau in Alzheimer’s disease: an instigator of synaptic dysfunction underlying memory loss: increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy. Bioessays 39, 1–9.10.1002/bies.201600224Search in Google Scholar PubMed PubMed Central

Tremolizzo, L., Messina, P., Conti, E., Sala, G., Cecchi, M., Airoldi, L., Pastorelli, R., Pupillo, E., Bandettini Di Poggio, M., Filosto, M., et al. (2014). Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of Age of onset. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 98–105.10.3109/21678421.2013.851247Search in Google Scholar PubMed

Turrigiano, G.G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103.10.1146/annurev-neuro-060909-153238Search in Google Scholar PubMed

Vassar, R. (2014). BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res. Ther. 24, 89–104.10.1186/s13195-014-0089-7Search in Google Scholar

Verret, L., Mann, E.O., Hang, G.B., Barth, A.M., Cobos, I., Ho, K., Devidze, N., Masliah, E., Kreitzer, A.C., Mody, I., et al. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721.10.1016/j.cell.2012.02.046Search in Google Scholar

Vezzani, A., French, J., Bartfai, T., and Baram, T.Z. (2011). The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40.10.1038/nrneurol.2010.178Search in Google Scholar

Vossel, K.A., Tartaglia, M.C., Nygaard, H.B., Zeman, A.Z., and Miller, B.L. (2017). Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 16, 311–322.10.1016/S1474-4422(17)30044-3Search in Google Scholar

Wang, J., Liu, Y., Li, X.H., Zeng, X.C., Li, J., Zhou, J., Xiao, B., and Hu, K. (2017). Curcumin protects neuronal cells against status-epilepticus-induced hippocampal damage through induction of autophagy and inhibition of necroptosis. Can. J. Physiol. Pharmacol. 95, 501–509.10.1139/cjpp-2016-0154Search in Google Scholar

Warner, T.A., Kang, J.Q., Kennard, J.A., and Harrison, F.E. (2015). Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer’s disease. Epilepsy Res. 110, 20–25.10.1016/j.eplepsyres.2014.11.017Search in Google Scholar

Wong, S.B., Cheng, S.J., Hung, W.C., Lee, W.T., and Min, M.Y. (2015). Rosiglitazone suppresses in vitro seizures in hippocampal slice by inhibiting presynaptic glutamate release in a model of temporal lobe epilepsy. PLoS One 10, 1–14.10.1371/journal.pone.0144806Search in Google Scholar

Wu, H., Lu, M.H., Wang, W., Zhang, M.Y., Zhu, Q.Q., Xia, Y.Y., Xu, R.X., Yang, Y., Chen, L.H., and Ma, Q.H. (2015). Lamotrigine reduces β-site AβPP-cleaving enzyme 1 protein levels through induction of autophagy. J Alzheimers Dis. 46, 863–876.10.3233/JAD-143162Search in Google Scholar

Xia, P., Chen, H.S., Zhang, D., and Lipton, S.A. (2010). Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci. 30, 11246–11250.10.1523/JNEUROSCI.2488-10.2010Search in Google Scholar

Xu, X., Russel, T., Bazner, J., and Hamilton, J. (2001). NMDA receptor antagonist AP5 and nitric oxide synthase inhibitor 7-NI affect different phase of learning and memory in gold fish. Brain Res. 889, 274–277.10.1016/S0006-8993(00)03216-9Search in Google Scholar

Xu, R., Thomas, E.A., Gazina, E.V., Richards, K.L., Quick, M., and Wallace, R.H. (2007). Generalized epilepsy with febrile seizures plus-associated sodium channel β1 subunit mutations severely reduce β subunit-mediated modulation of sodium channel function. Neuroscience 148, 164–174.10.1016/j.neuroscience.2007.05.038Search in Google Scholar PubMed

Xu, Y., Chen, Y., Zhang, P., Jeffrey, PIA.D., and Shi, Y. (2008a). Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated tau dephosphorylation. Mol. Cell 31, 873–885.10.1016/j.molcel.2008.08.006Search in Google Scholar PubMed PubMed Central

Xu, L., Rensing, N., Yang, X.F., Zhang, H.X., Thio, L.L., Rothman, S.M., Weisenfeld, A.E., Wong, M., and Yamada, K.A. (2008b). Leptin inhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents. J. Clin. Invest. 118, 272–280.10.1172/JCI33009Search in Google Scholar PubMed PubMed Central

Xu, Y., Zeng, K., Han, Y., Wang, L., Chen, D., Xi, Z., Wang, H., Wang, X., and Chen, G. (2012). Altered expression of CX3CL1 in patients with epilepsy and in a rat model. Am. J. Pathol. 180, 1950–1962.10.1016/j.ajpath.2012.01.024Search in Google Scholar PubMed

Xuan, A.G., Pan, X.B., Wei, P., Ji, W.D., Zhang, W.J., Liu, J.H., Hong, L.P., Chen, W.L., and Long, D.H. (2015). Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer’s disease. Mol. Neurobiol. 51, 300–312.10.1007/s12035-014-8751-4Search in Google Scholar PubMed

Yang, Y., Hu, W., Jiang, S., Wang, B., Li, Y., Fan, C., Di, S., Ma, Z., Lau, W.B., and Qu, Y. (2015). The emerging role of adiponectin in cerebrovascular and neurodegenerative diseases. Biochim. Biophys. Acta 1852, 1887–1894.10.1016/j.bbadis.2015.06.019Search in Google Scholar PubMed

Yao, Z.G., Liang, L., Liu, Y., Zhang, L., Zhu, H., Huang, L., and Qin, C. (2014). Valproate improves memory deficits in an Alzheimer’s disease mouse model: investigation of possible mechanisms of action. Cell. Mol. Neurobiol. 34, 805–812.10.1007/s10571-013-0012-ySearch in Google Scholar PubMed

Yildiz Akar, E., Ulak, G., Tanyer, P., Erden, P., Utkan, T., and Gacar, N. (2007). 7-nitroindazole, a neuronal nitric oxide synthase inhibitor impairs passive-avoidance and elevated plus-maze memory performance in rats. Pharmacol. Biochem. Behav. 87, 434–443.10.1016/j.pbb.2007.05.019Search in Google Scholar PubMed

Zeng, L., Xu, L., Gutmann, D.H., and Wong, M. (2008). Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63, 444–453.10.1002/ana.21331Search in Google Scholar PubMed PubMed Central

Zhang, Y.W., Thompson, R., Zhang, H., and Xu, H. (2011). APP processing in Alzheimer’s disease. Mol. Brain 4, 3–15.10.1186/1756-6606-4-3Search in Google Scholar PubMed PubMed Central

Zhang, M.Y., Zheng, C.Y., Zou, M.M., Zhu, J.W., Zhang, Y., Wang, J., Liu, C.F., Li, Q.F., Xiao, Z.C., Li, S., et al. (2014). Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice. Neurobiol. Aging 35, 2713–2725.10.1016/j.neurobiolaging.2014.06.009Search in Google Scholar PubMed

Zimmerman, G., Njunting, M., Ivens, S., Tolner, E.A., Behrens, C.J, and Gross, M. (2008). Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats. Eur. J. Neurosci. 27, 965–975.10.1111/j.1460-9568.2008.06070.xSearch in Google Scholar PubMed

Ziyatdinova, S., Gurevicius, K., Kutchiashvili, N., Bolkvadze, T., Nissinen, J., Tanila, H., and Pitkanen, A. (2011). Spontaneous epileptiform discharges in a mouse model of Alzheimer’s disease are suppressed by antiepileptic drugs that block sodium channels. Epilepsy Res. 94, 75–85.10.1016/j.eplepsyres.2011.01.003Search in Google Scholar PubMed

Zufferey, V., Donati, A., Popp, J., Meuli, R., Rossier, J., Frackowiak, R., Draganski, B., von Gunten, A., and Kherif, F. (2017). Neuroticism, depression, and anxiety traits exacerbate the state of cognitive impairment and hippocampal vulnerability to Alzheimer’s disease. Alzheimers Dement. 7, 107–114.10.1016/j.dadm.2017.05.002Search in Google Scholar PubMed PubMed Central

Received: 2017-8-10
Accepted: 2017-10-12
Published Online: 2018-1-12
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2017-0064/html
Scroll to top button