Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 6, 2018

On the Rellich inequality in Lp(·)(a,b)

  • David Edmunds and Alexander Meskhi ORCID logo EMAIL logo

Abstract

In this note we prove a one-dimensional Rellich inequality in variable exponent Lebesgue spaces, with exponents that satisfy a condition of log-Hölder type.

MSC 2010: 26D10; 34A40

Dedicated to Professor V. Kokilashvili on the occasion of his 80th birthday


Acknowledgements

The authors are grateful to the referee for the useful remarks.

References

[1] R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing, Comput. Math. Appl. 56 (2008), no. 4, 874–882. 10.1016/j.camwa.2008.01.017Search in Google Scholar

[2] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213–259. 10.1007/s00205-002-0208-7Search in Google Scholar

[3] A. Balinsky, W. D. Evans and R. T. Lewis, The Analysis and Geometry of Hardy’s Inequality, Universitext, Springer, Cham, 2015. 10.1007/978-3-319-22870-9Search in Google Scholar

[4] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406. 10.1137/050624522Search in Google Scholar

[5] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Heidelberg, 2013. 10.1007/978-3-0348-0548-3Search in Google Scholar

[6] E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in Lp(Ω), Math. Z. 227 (1998), no. 3, 511–523. 10.1007/PL00004389Search in Google Scholar

[7] L. Diening, Maximal function on generalized Lebesgue spaces Lp(), Math. Inequal. Appl. 7 (2004), no. 2, 245–253. Search in Google Scholar

[8] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011. 10.1007/978-3-642-18363-8Search in Google Scholar

[9] D. E. Edmunds and W. D. Evans, The Rellich inequality, Rev. Mat. Complut. 29 (2016), no. 3, 511–530. 10.1007/s13163-016-0200-7Search in Google Scholar

[10] P. Harjulehto, P. Hästö, V. Latvala and O. Toivanen, Critical variable exponent functionals in image restoration, Appl. Math. Lett. 26 (2013), no. 1, 56–60. 10.1016/j.aml.2012.03.032Search in Google Scholar

[11] M. Izuki, E. Nakai and Y. Sawano, Function spaces with variable exponents - an introduction, Sci. Math. Jpn. 77 (2014), no. 2, 187–315. Search in Google Scholar

[12] V. Kokilashvili, On a progress in the theory of integral operators in weighted Banach function spaces, Function Spaces, Differential Operators and Nonlinear Analysis (Svrtka 2004), Academy of Sciences of the Czech Republic, Praha (2005), 152–175. Search in Google Scholar

[13] V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral Operators in Non-Standard Function Spaces. Vol. 1. Variable Exponent Lebesgue and Amalgam Spaces, Oper. Theory Adv. Appl. 248, Birkhäuser, Cham, 2016. 10.1007/978-3-319-21015-5_1Search in Google Scholar

[14] V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral Operators in Non-Standard Function Spaces. Vol. 2. Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Oper. Theory Adv. Appl. 249, Birkhäuser, Cham, 2016. 10.1007/978-3-319-21018-6Search in Google Scholar

[15] O. Kovácik and J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. Search in Google Scholar

[16] A. Kufner and L.-E. Persson, Weighted Inequalities of Hardy Type, World Scientific, River Edge, 2003. 10.1142/5129Search in Google Scholar

[17] F. I. Mamedov and F. Mammadova, A necessary and sufficient condition for Hardy’s operator in Lp(.)(0,1), Math. Nachr. 287 (2014), no. 5–6, 666–676. 10.1002/mana.201200291Search in Google Scholar

[18] F. I. Mamedov and Y. Zeren, A necessary and sufficient condition for Hardy’s operator in the variable Lebesgue space, Abstr. Appl. Anal. 2014 (2014), Article ID 342910. 10.1155/2014/342910Search in Google Scholar

[19] B. Muckenhoupt, Hardy’s inequality with weights. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I., Studia Math. 44 (1972), 31–38. 10.4064/sm-44-1-31-38Search in Google Scholar

[20] K. R. Rajagopal and M. Růžička, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13 (2001), no. 1, 59–78. 10.1007/s001610100034Search in Google Scholar

[21] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000. 10.1007/BFb0104029Search in Google Scholar

[22] S. G. Samko, Convolution type operators in Lp(x), Integral Transforms Spec. Funct. 7 (1998), no. 1–2, 123–144. 10.1080/10652469808819191Search in Google Scholar

[23] I. I. Sharapudinov, The topology of the space p(t)([0,1]) (in Russian), Mat. Zametki 26 (1979), no. 4, 613–632. Search in Google Scholar

[24] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710. 10.1070/IM1987v029n01ABEH000958Search in Google Scholar

Received: 2017-9-12
Revised: 2018-1-15
Accepted: 2018-1-20
Published Online: 2018-4-6
Published in Print: 2018-6-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/gmj-2018-0024/html
Scroll to top button