Skip to main content
Log in

Immaturity of Bile Canalicular–Ductule Networks in the Future Liver Remnant While Associating Liver Partition and Portal Vein Occlusion for Staged Hepatectomy (ALPPS)

  • Hepatobiliary Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

We studied histologic changes of bile canalicular–ductule networks in the future liver remnant (FLR) while associating liver partition and portal vein occlusion for staged hepatectomy (ALPPS), since little is known about regeneration of these networks during the relatively short interval between procedures in ALPPS.

Methods

Bile canalicular–ductule networks were examined in specimens from eight patients treated with ALPPS and six patients undergoing hepatectomy following portal vein embolization (PVE). Expression of multidrug resistance-1 (MDR1), a membrane transporter in bile canaliculi (BC), was analyzed immunohistochemistcally. Morphologic changes of BC and tight junctions (TJs) adjoining BC were also assessed electron microscopically.

Results

Extrapolated kinetic growth of the FLR was greater during ALPPS (17.2 ± 6.8 mL/day) than after PVE (6.3 ± 3.4 mL/day; p = 0.005), and continuity of the MDR1-positive bile canalicular networks was less evident in ALPPS than PVE (p < 0.001). Electron microscopically, no significant difference was evident in numbers of BC or BC lumen size between the two groups; however, development of microvilli in BC was poorer in the ALPPS group than in the PVE group (p < 0.001). TJ/desmosome complexes were shorter in the ALPPS group (0.69 ± 0.52 μm) than in the PVE group (1.09 ± 0.50 μm; p < 0.001), and leaky TJs were seen more frequently in the ALPPS group (64.9 vs. 23.6%; p = 0.001).

Conclusions

Regeneration of bile canalicular–ductule networks in the FLR was poorer in ALPPS than PVE, which may be associated with prolonged cholestasis following final hepatectomy in ALPPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schnitzbauer AA, Lang SA, Goessmann H, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg. 2012;255:405–14.

    Article  PubMed  Google Scholar 

  2. de Santibanes E, Alvarez FA, Ardiles V. How to avoid postoperative liver failure: a novel method. World J Surg. 2012;36:125–8.

    Article  PubMed  Google Scholar 

  3. Alvarez FA, Iniesta J, Lastiri J, Ulla M, Bonadeo Lassalle F, de Santibanes E. New method of hepatic regeneration [in Spanish]. Cir Esp. 2011;89:645–9 [in Spanish].

    Article  PubMed  Google Scholar 

  4. Schadde E, Raptis DA, Schnitzbauer AA, et al. Prediction of mortality after ALPPS stage-1: an analysis of 320 patients from the international ALPPS registry. Ann Surg. 2015;262:780–5; discussion 785-6.

  5. Tanaka K, Matsuo K, Murakami T, et al. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): short-term outcome, functional changes in the future liver remnant, and tumor growth activity. Eur J Surg Oncol. 2015;41:506–12.

    Article  CAS  PubMed  Google Scholar 

  6. Matsuo K, Murakami T, Kawaguchi D, et al. Histologic features after surgery associating liver partition and portal vein ligation for staged hepatectomy versus those after hepatectomy with portal vein embolization. Surgery. 2016;159:1289–98.

    Article  PubMed  Google Scholar 

  7. Rahbari NN, Garden OJ, Padbury R, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149:713–24.

    Article  PubMed  Google Scholar 

  8. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ninomiya M, Shirabe K, Terashi T, et al. Deceleration of regenerative response improves the outcome of rat with massive hepatectomy. Am J Transplant. 2010;10:1580–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ninomiya M, Shimada M, Terashi T, et al. Sustained spatial disturbance of bile canalicular networks during regeneration of the steatotic rat liver. Transplantation. 2004;77:373–9.

    Article  PubMed  Google Scholar 

  11. Morsiani E, Aleotti A, Ricci D. Haemodynamic and ultrastructural observations on the rat liver after two-thirds partial hepatectomy. J Anat. 1998;192:507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vos TA, Ros JE, Havinga R, Moshage H, Kuipers F, Jansen PL, et al. Regulation of hepatic transport systems involved in bile secretion during liver regeneration in rats. Hepatology. 1999;29:1833–9.

    Article  CAS  PubMed  Google Scholar 

  13. Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3:1035–78.

    PubMed  PubMed Central  Google Scholar 

  14. Yamanaka N, Okamoto E, Oriyama T, et al. A prediction scoring system to select the surgical treatment of liver cancer. Further refinement based on 10 years of use. Ann Surg. 1994;219:342–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka K, Kikuchi Y, Kawaguchi D, Murakami T, Hiroshima Y, Matsuo K. Modified ALPPS procedures avoiding division of portal pedicles. Ann Surg. 2017;265:e14–e20.

    Article  PubMed  Google Scholar 

  16. Belghiti J, Guevara OA, Noun R, Saldinger PF, Kianmanesh R. Liver hanging maneuver: a safe approach to right hepatectomy without liver mobilization. J Am Coll Surg. 2001;193:109–11.

    Article  CAS  PubMed  Google Scholar 

  17. Terminology Committee of the International Hepato-Pancreato-Biliary Association. The Brisbane 2000 terminology of liver anatomy and resection. HPB. 2000;2:333–9.

    Article  Google Scholar 

  18. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balzan S, Belghiti J, Farges O, et al. The “50-50 criteria” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Ann Surg. 2005;242:824–8, discussion 828-9.

  20. Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003;83:633–71.

    Article  CAS  PubMed  Google Scholar 

  21. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med. 1998;339:1217–27.

    Article  CAS  PubMed  Google Scholar 

  22. Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N. Regulation of the blood-biliary barrier: interaction between gap and tight junctions in hepatocytes. Med Electron Microsc. 2003;36:157–64.

    Article  PubMed  Google Scholar 

  23. Anderson JM. Leaky junctions and cholestasis: a tight correlation. Gastroenterology. 1996;110:1662–5.

    Article  CAS  PubMed  Google Scholar 

  24. Rasband WS. ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. 1997–2012. http://imagej.nih.gov/ij/.

  25. Muller M, Jansen PL. The secretory function of the liver: new aspects of hepatobiliary transport. J Hepatol. 1998;28:344–54.

    Article  CAS  PubMed  Google Scholar 

  26. Gerloff T, Geier A, Stieger B, Hagenbuch B, Meier PJ, Matern S, Gartung C. Differential expression of basolateral and canalicular organic anion transporters during regeneration of rat liver. Gastroenterology. 1999;117:1408–15.

    Article  CAS  PubMed  Google Scholar 

  27. Tanimizu N, Kaneko K, Itoh T, et al. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology. 2016;64:175–88.

    Article  CAS  PubMed  Google Scholar 

  28. Weibel ER, Staubli W, Gnagi HR, Hess FA. Correlated morphometric and biochemical studies on the liver cell. I: morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969;42:68–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Toh YC, Li Q, et al. Mechanical compaction directly modulates the dynamics of bile canaliculi formation. Integr Biol (Camb). 2013;5:390–401.

    Article  CAS  PubMed  Google Scholar 

  30. Herr KJ, Tsang YH, Ong JW, et al. Loss of alpha-catenin elicits a cholestatic response and impairs liver regeneration. Sci Rep. 2014;4:6835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robenek H, Herwig J, Themann H. The morphologic characteristics of intercellular junctions between normal human liver cells and cells from patients with extrahepatic cholestasis. Am J Pathol. 1980;100:93–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Montesano R, Friend DS, Perrelet A, Orci L. In vivo assembly of tight junctions in fetal rat liver. J Cell Biol. 1975;67:310–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feltkamp CA, Van der Waerden AW. Junction formation between cultured normal rat hepatocytes. An ultrastructural study on the presence of cholesterol and the structure of developing tight-junction strands. J Cell Sci. 1983;63:271–86.

    CAS  PubMed  Google Scholar 

  34. Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol. 2009;1(6):a002899.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Truant S, Baillet C, Deshorgue AC, et al. Drop of total liver function in the interstages of the new associating liver partition and portal vein ligation for staged hepatectomy technique: analysis of the “auxiliary liver” by HIDA scintigraphy. Ann Surg. 2016;263:e33–4.

    Article  PubMed  Google Scholar 

  36. de Santibanes M, Boccalatte L, de Santibanes E. A literature review of associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): so far, so good. Updates Surg. 2017;69(1):9–19.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Takayoshi Koyasu for his excellent technical assistance with transmission electron microscopy.

Disclosures

Kenichi Matsuo, Yukihiko Hiroshima, Kazuto Yamazaki, Kohei Kasahara, Yutaro Kikuchi, Daisuke Kawaguchi, Takashi Murakami, Yasuo Ishida, and Kuniya Tanaka have no disclosures to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniya Tanaka MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuo, K., Hiroshima, Y., Yamazaki, K. et al. Immaturity of Bile Canalicular–Ductule Networks in the Future Liver Remnant While Associating Liver Partition and Portal Vein Occlusion for Staged Hepatectomy (ALPPS). Ann Surg Oncol 24, 2456–2464 (2017). https://doi.org/10.1245/s10434-017-5922-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-017-5922-3

Keywords

Navigation