Skip to main content
Log in

Immobilization of alkaline phosphatase using chitosan nanoparticles

  • Various Technologies
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Enzyme immobilization is an operative method for improving enzyme properties. There are various supports to enzyme immobilization. In the present study chitosan nanoparticles have been applied to alkaline phosphatase (ALP) immobilize due to their special properties. Firstly, the Ionic Gelation method was used to synthesize Chitosan nanoparticles, and were characterized using XRD and Zetasizer Nano. Then, chitosan nanoparticles were activated with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide (EDC) and ALP was such- cessfully immobilized on them. The influences of time, pH, and concentration of enzyme, and EDC on the efficiency of immobilization have been investigated. The stability studied against organic solvents and high temperature, which has indicated the stability of the immobilized enzyme, was increased during the immobilization. The surface topography of the bare and immobilized enzyme nanoparticles was studied by AFM. The calculation of binding efficiency showed that the immobilized ALP has conserved 71% of its native activity. The improvement of the enzyme stability by immobilization has indicated that chitosan nanoparticles were suitable support for immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Muginova, S.V., Zhavoronkova, A.M., Polyakov, A.E., and Shekhovtsova, T.N., Anal. Sci., 2007, vol. 23, pp. 357–63.

    Article  Google Scholar 

  2. Joseph, E.C., Annu Rev. Biophys. Biomol. Struct., 1992, vol. 21, pp. 441–483.

    Article  Google Scholar 

  3. Montornes, A.E. and Osullivan, J.M., J. Electroanal. Chem., 2006, vol. 587, pp. 140–147.

    Article  Google Scholar 

  4. Kreuzer, M.P., Sullivan, C.K., and Guilbault G.G., Analytica Chimica Acta, 1999, vol. 393, pp. 95–102.

    Article  CAS  Google Scholar 

  5. Rankin, S.A., Christiansen, A., Lee, W., Banavara, D.S., Lopez-Hernandez, A., J. Dairy Sci., 2010, vol. 93, pp. 5538–51.

    Article  CAS  Google Scholar 

  6. Soares, C.F., Fonseca, L.M., Leite, M.O., and Oliveira, M.C.P.P., Arq. Bras. Med. Vet. Zoo, 2010, pp. 1223–1230.

    Google Scholar 

  7. Martin, D., Linxweiler, W., Tanzer, D., Vormbrock, R., Olt, R., Kiesner, C., and Meisel, H., Deut Lebensm Rundsch, 2005, vol. 101, pp. 281–286.

    CAS  Google Scholar 

  8. Rittie, L. and Perbal, B., J. Cell Commun. Signal, vol. 2, pp. 25–45.

  9. Mateo, C., Palomo, J.M., Fernandez-Lorente, G, Guisan, J.M., and Fernandez-Lafuente, R., Enzyme Microbiol. Technol., 2007, vol. 40, pp. 1451–1463.

    Article  CAS  Google Scholar 

  10. Nisha, S., Karthick, A., and Gobi, N., Chem. Sci. Rev. Lett., 2012, vol. 1, pp. 148–155.

    CAS  Google Scholar 

  11. Kuhlmeyer, C. and Klein, J., Enzyme Microbiol. Technol., 2003, vol. 32, pp. 99–106.

    Article  CAS  Google Scholar 

  12. Gomez, J.L., Bodalo, A., Gomez, E., Bastida, J., Hidalgo, A.M., and Gomez, M., Enzyme Microbial Technol., 2006, vol. 39, pp. 1016–1022.

    Article  CAS  Google Scholar 

  13. Temocin, Z. and Yigitoglu, M., Bioprocess Biosyst. Eng., 2008. vol. 32, pp. 467–474.

    Article  Google Scholar 

  14. Liu, W., Wang, L., and Jiang, R., Top. Catal., 2012, vol. 55, pp. 1146–1156.

    Article  CAS  Google Scholar 

  15. Sorlier, P., Denuziere. A., Viton, C., and Domard, A., Biomacromol., 2001. vol. 2, pp. 765–772.

    Article  CAS  Google Scholar 

  16. Yang, K., Xu, N.S., and Su, W.W., J. Biotechnol., 2010, vol. 148, pp. 119–127.

    Article  CAS  Google Scholar 

  17. Wang, J.J., Zeng, Z.W., Xiao, R.Z., Xie, T., Zhou, G.L., Zhan, X.R., and Wang S.L., Int. J. Nanomedicine, vol. 6, pp. 765–774.

  18. Grenha, A., Seijo, B., and Remunan-Lopez, C., Eur. J. Pharmaceutical Sci., 2005, vol. 25, pp. 427–437.

    Article  CAS  Google Scholar 

  19. Kong, M., Chen, X.G., Xing, K., and Park, H.J., Int. J. Food Microbial., 2010, vol. 144, pp. 51–63.

    Article  CAS  Google Scholar 

  20. RaviKumar, M.N.V., React. Funct. Polym., 2000, vol. 46, pp. 1–27.

    Article  Google Scholar 

  21. Kim, I.Y., Seo, S.J., Moon, H.S., Yoo, M.K., Park, I.Y., Kim, B.C., and Cho, C.S., Biotechnol. Adv., 2008, vol. 26, pp. 1–21.

    Article  CAS  Google Scholar 

  22. Venkatesan, J. and Kim, S.K., Mar. Drugs, 2010, vol. 8, pp. 2252–2266.

    Article  CAS  Google Scholar 

  23. Xing, L., Lie, M., Zhengwei, M., and Changyou, G., Adv. Polym. Sci., 2011. vol. 244, pp. 81–128.

    Article  Google Scholar 

  24. Rodrigues, S., Dionisio, M., Lopez, C.R., and Grenha, A., J. Funct. Biomater., 2011. vol. 3, pp. 615–641.

    Article  Google Scholar 

  25. Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V., and Tamura, H., Carbohydrate Polym., 2010, vol. 82, pp. 227–232.

    Article  CAS  Google Scholar 

  26. Krajewska, B., Enzyme Microbial. Technol., 2004, vol. 35, pp. 126–139.

    Article  CAS  Google Scholar 

  27. Nakorn, P., J. Metals Mater. Minerals, 2008, vol. 18, pp. 73–77.

    CAS  Google Scholar 

  28. Tang, Z.X., Qian, J.Q., and Shi L.E., Process Biochem., 2006, vol. 41, pp. 1193–1197.

    Article  CAS  Google Scholar 

  29. Bindhu, L.V. and Abraham, E.T., J. Appl. Polymer Sci., 2003, vol. 88, pp. 1456–1464.

    Article  CAS  Google Scholar 

  30. Fernandes, K.F., Lima, C.S., Pinho, H., and Collins, C.H., Process Biochem., 2003, vol. 38, pp. 1379–138.

    Article  CAS  Google Scholar 

  31. Vaezifar, S., Golozar, M.A., Morshed, M., Razavi, S.H., Karbasi, S., and Kamali, M., J. Clust. Sci., vol. 24, 2013, pp. 891–903.

    Article  CAS  Google Scholar 

  32. Zubriene, A., Budriene, S., Lubiene, J., and Dienys, G., Biocatal. Biotransform., 2002, vol. 20, pp. 423–427.

    Article  CAS  Google Scholar 

  33. Hirano S, Miur O., Biotechnol. Bioeng, 1979, vol. 21, pp. 711–714.

    Article  CAS  Google Scholar 

  34. Zubriene, A., Budriene, S., Gorochovceva, N., Romaskevic, T., Matulionis, E., and Dienys, G., Chemija, 2003, vol. 14, pp. 226–230.

    CAS  Google Scholar 

  35. Zhang, P. and Tan, W., J. Analytic Chem., 2001, vol. 369, pp. 302–307.

    CAS  Google Scholar 

  36. Masato, T, Akihiro, O, Yoshihisa, Y, and Masashi, K., J. Electroanal. Chem., 2003, vol. 566, pp. 323–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Jafary.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafary, F., Varshosaz, J., Panjehpour, M. et al. Immobilization of alkaline phosphatase using chitosan nanoparticles. Russ J Appl Chem 88, 891–897 (2015). https://doi.org/10.1134/S1070427215050262

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215050262

Keywords

Navigation