Skip to main content
Log in

Bioactive composites produced in situ on the basis of calcium phosphates and lactic acid oligomers

  • Various Technologies
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Composites based on lactic acid oligomers, calcium hydrophosphate and hydroxyapatite synthesized under the action of microwave radiation were obtained in situ. The appearance of a new band associated with stretching vibrations of >C=O in spectra of the chloroform-insoluble fraction is indicative of the chemical interaction between lactic acid and hydroxyapatite. To determine whether a calcium phosphate layer can be formed on the surface of composite samples, biomimetic studies in a physiological SBF solution were carried out during 28 days at 37°C. It was found that all samples containing calcium phosphates promote active formation of a new calcium phosphate layer, whereas lactic acid oligomer in samples containing no inorganic component undergoes destruction in the SBF solution as a result of hydrolysis. The estimate of the resorption rate demonstrated that the solubility of calcium phosphates contained in the composites at 20°C in the physiological solution is 3–7 times that of pure hydroxyapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sevast’yanov, V.I. and Kirpichnikov, M.P., Biosovmestimye materialy (Biocompatible Materials), Moscow: MIA, 2011.

    Google Scholar 

  2. Jenkins, M., Biomedical Polymers, Elsevier Science & Technology, 2007.

    Book  Google Scholar 

  3. Hench, L. and Jones, J., Biomaterials, Artificial Organs and Tissue Engineering, Woodhead Publishing, 2005.

    Book  Google Scholar 

  4. Fomin, A.S., Komlev, V.S., and Barinov, S.M., Persektiv. Mater., 2006, no. 2, pp. 51–54.

    Google Scholar 

  5. Basrinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Bioreceramic Based on Calcium Phosphates), Moscow: Nauka, 2005.

    Google Scholar 

  6. Putlyaev, V.I., Soros. Obrazovat. Zh., 2004, vol. 8, no. 1, pp. 44–50.

    Google Scholar 

  7. Ben-Nissan, B., Advances in Calcium Phosphate Biomaterials, Spinger, 2014.

    Book  Google Scholar 

  8. Shtil’man, M.I., Polimery mediko-biologicheskogo naznacheniya (Polymers for Medical-Biological Purposes), Moscow: IKTs Akademkniga, 2006.

    Google Scholar 

  9. Bartolo, P., Kruth, J., Silva, J., et al., CIRP Ann.-Manuf. Technol., 2012, no. 61, pp. 635–655.

    Google Scholar 

  10. Kasuga, T. and Ota, Y., Biomaterials, 2001, no. 22, pp. 19–23.

    Google Scholar 

  11. Yu, Q. and Qin, Y., eXPRESS Polym. Lett., 2013, no. 1, pp. 55–62.

    Google Scholar 

  12. Petricca, S., Marra, K., and Kumta, P., Acta Biomater., 2006, no. 2, pp. 277–286.

    Google Scholar 

  13. Sun, F. and Zhou, H., Acta Biomater., 2011, no. 7, pp. 3813–3828.

    Google Scholar 

  14. Yang, C., Yi, L., Cui, Yi., et al., Acta Biomater., 2009, no. 5, pp. 2680–2692.

    Google Scholar 

  15. Fujii, S., Miyanari, Y., Nishimura, T., et al., Polym. Degrad. Stab., 2013, no. 98, pp. 377–386.

    Google Scholar 

  16. Diao, H., Si, Y., Zhu, A., et al., Mater. Sci. Eng., C, 2012, no. 32, pp. 1796–1801.

    Google Scholar 

  17. RF Patent 2429885, 2011.

  18. Kokubo, T. and Takadama, H., Biomaterials, 2006, no. 27, pp. 2907–2915.

    Google Scholar 

  19. Rasskazova, L., Korotchenko, N., and Zeer, G., Russ. J. Appl. Chem., 2013, vol. 86, no. 5, pp. 691–695.

    Article  CAS  Google Scholar 

  20. RF Patent 2507151, 2014.

  21. Schwarzenbach, G. and Flashka, H., Die Komplexonometrische Titration, Ferdinant Enke Verlag Stuttgard, 1965.

    Google Scholar 

  22. Charlot, G., Les Méthodes de la chimie analytique, analyse quantitative minérale, Edité par Masson & Cie, 1966.

    Google Scholar 

  23. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Al’yans, 2007.

    Google Scholar 

  24. Surmeneva, M.A., Surmenev, R.A., Pichugin, V. F., et al., Poverkhn.: Rentgen., Sinkhrotron. Neitron. Issled., 2011, no. 12, pp. 81–87.

    Google Scholar 

  25. Biosovmestimost’ (Biocompatibility), Sevast’yanov, V.I., Ed., Moscow: Izd. Tsentr VNIIgeosistem, 1999.

    Google Scholar 

  26. Ohtsuki, C., Aoki, Y., Kokubo, T., et al., J. Ceram. Soc. Japan, 1995, no. 103, pp. 449–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Rasskazova.

Additional information

Original Russian Text © L.A. Rasskazova, D.N. Lytkina, Ye.G. Shapovalova, V.V. Botvin, M.A. Pozdnyakov, A.G. Filimoshkin, N.M. Korotchenko, V.V. Kozik, 2015, published in Zhurnal Prikladnoi Khimii, 2015, Vol. 88, No. 4, pp. 639–645.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasskazova, L.A., Lytkina, D.N., Shapovalova, Y.G. et al. Bioactive composites produced in situ on the basis of calcium phosphates and lactic acid oligomers. Russ J Appl Chem 88, 669–675 (2015). https://doi.org/10.1134/S1070427215040205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215040205

Keywords

Navigation