Skip to main content
Log in

Graphene flexible touchscreen with integrated analog-digital converter

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The possibilities of developing a projection-capacitance touchscreen which aligns sensors and an analog-digital converter produced from the material based on graphene have been considered. The alignment of these two elements will make it possible to implement a touchscreen with digital signals at the output contacts which will make it possible to connect it to the integrated logical circuits of the control system. The touchscreen is a film with a thickness of 100–150 micrometers with alternating graphene layers, which transmit 6–8% more light than a projection-capacitance screen from indium and stanum oxides. The screen is highly flexible, is mechanically hard, and the materials—saccharose, copper foil, boron nitride (BN), etc.—used to fabricate it potentially cost less. This is achieved by the application of a complex of the known methods used to obtain films from two-dimensional materials based on graphene of a preset configuration on flexible polymer substrates and a single construction of the system for electrical capacitance accumulation in a touchscreen and analog-digital conversion on graphene field-effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Demin, A.A. and Terent’ev, D.S, Alternative manufacturing techniques of the touch capacitive screen, Datchiki Sist., 2013, no. 9, pp. 56–63.

    Google Scholar 

  2. Stephen, W., iPhone 6 concept shows flexible, folding display with Graphene shell. http://www.todaysiphone. com/2013/07/iphone-6-concept-shows-flexible-foldingdisplay-with-graphene-shell. Accessed February 15, 2014.

  3. Terent’ev, D.S., Vlasov, A.I., and Tokarev, S.V, Projective and capacitor the touch screen for the built-in mobile systems, Prikasp. Zh.: Upravl. Vys. Tekhnol., 2013, no. 1, pp. 16–25.

    Google Scholar 

  4. Fang, Zh., Wang, Yu., Liu, Zh., Schlather, A., Ajayan, P.M., Frank, H.L., Koppens, P.N., and Halas, N.J., Plasmon-induced doping of graphene, ACS Nano, 2012, no. 6, pp. 10222–10228.

    Article  Google Scholar 

  5. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., and Ponomarenko, L.A., Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 2012, vol. 335, no. 6071, pp. 947–950.

    Article  Google Scholar 

  6. Hunt, B., Sanchez-Yamagishi, J.D., Young, A.F., Yankowitz, M., LeRoy, B.J., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P., and Ashoori, R.C, Massive Dirac fermions and hofstadter butterfly in a van der Waals heterostructure, Science, 2013, vol. 340, no. 6139, pp. 1427–1430.

    Article  Google Scholar 

  7. Georgiou, T., Jalil, R., Belle, B.D., Britnell, L., Gorbachev, R.V., Morozov, S.V., Kim, Y.-J., Gholinia, A., Haigh, S.J., Makarovsky, O., Eaves, L., Ponomarenko, L.A., Geim, A.K., Novoselov, K.S., and Mishchenko, A, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics, Nat. Nanotechnol., 2013, no. 8, p. 100.

    Article  Google Scholar 

  8. http://cyberland.ws/1245-grafen-v-poiskah-superugleroda. html. Accessed February 9, 2014.

  9. Sanders, R., Graphene opens door to tunable transistors, LEDs. http://www.berkeley.edu/news/media/releases/2009/06/10_graphene.shtml. Accessed February 9, 2014.

  10. Sorokin, P.B. and Chernozatonskii, L.A, Graphenebased semiconductor nanostructures, Phys. Usp., 2013, vol. 56, no. 2, pp. 105–122.

    Article  Google Scholar 

  11. Liao, L., Lin, Y.-Ch., Bao, M.-Q., Cheng, R., Bai, J.-W., Liu, Y., Qu, Y.-Q., Wang, K.L., Huang, Yu, and Duan, X.-F., High-speed graphene transistors with a self-aligned nanowire gate, Nat. Nanotechnol., 2010, vol. 467, no. 7313, pp. 305–308.

    Google Scholar 

  12. Decker, R., Wang, Y., Brar, V.W., Regan, W., Hsin-Zon, T., Qiong, W., Gannett, W., Zettl, A., and Crommie, M.F, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy, Nano Lett., 2011, vol. 11, no. 6, pp. 2291–2295.

    Article  Google Scholar 

  13. Parvizi, F., Teweldebrhan, D., Ghosh, S., Calizo, I., Balandin, A.A., Zhu, H., and Abbaschia, R, Graphene synthesis via the high pressure—high temperature growth process, Micro Nano Lett., 2008, no. 3, pp. 29–40.

    Article  Google Scholar 

  14. Physicists have found the ‘right’ copper to grow graphene. http://lenta.ru/news/2011/10/31/crystal/. Accessed January 29, 2014.

  15. Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E., and Lyding, J.W, Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition, Nano Lett., 2011, vol. 11, no. 11, pp. 4547–4554.

    Article  Google Scholar 

  16. IBM develops ‘graphene’ transistors. http://habrahabr.ru/company/ibm/blog/211570/. Accessed January 29, 2014.

  17. Liu, Ch.-G., Yu, Zh.-N., Neff, D., Zhamu, A., and Jang, B.Z, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett., 2010, vol. 10, no. 12, pp. 4863–4868.

    Article  Google Scholar 

  18. Ci, L., Song, L., Jin, Ch.-H., Jariwala, D., Wu, D.-X., Li, Yo.-G., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., and Ajayan, P.M, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater., 2010, no. 9, pp. 430–435.

    Article  Google Scholar 

  19. Supercapacitor with a meso-porous nano graphene electrode, USPatent no. 20120026643 A1, 2012. http://www.google.com.br/patents/US20120026643. Accessed January 29, 2014.

  20. Liu, G.-X., Ahsan, S., Khitun, A.G., Lake, R.K., and Balandin, A.A., Graphene-based non-boolean logic circuits, J. Appl. Phys., 2013, vol. 114, no. 15, p. 154310.

    Article  Google Scholar 

  21. Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., and Geim, A.K, Chaotic Dirac billiard in graphene quantum dots, Science, 2008, no. 5874, pp. 356–358.

    Article  Google Scholar 

  22. Grayfer, E.D., Makotchenko, V.G., Nazarov, A.S., Kim, S.J., and Fedorov, V.E, Graphene: chemical approaches to the synthesis and modification, Russ. Chem. Rev., 2011, vol. 80, no. 8, pp. 751–770.

    Article  Google Scholar 

  23. Asmakov, S.V, Flexible displays, Komp’yuterPress, 2005, no. 3, pp. 60–67.

    Google Scholar 

  24. Kolenchenko, O., Post-silicon. Part 2 Technology, which will replace the CMOS: alternative materials. http://www.ferra.ru/ru/techlife/review/post-siliconafter-cmos-new-materials/. Accessed February 10, 2014.

  25. Technical Glossary. http://cncexpert.ru/technicalglossary/carbonium.php. Accessed August 31, 2014.

  26. The price of flat carbon. http://lenta.ru/articles/2010/10/05/graphene/. Accessed August 31, 2014.

  27. Besedina, K.N., Vlasov, A.I., Tokarev, S.V., Moiseev, K.M., Panfilov, Yu.V., and Shakhnov, V.A, Perspective of a creation of perception and processing tools based on photon crystals, Datchiki Sist., 2011, no. 7, pp. 69–78.

    Google Scholar 

  28. Li, S., Lijie, C., Hao, L., Sorokin, P.B., Chuanhong, J., Jie, N., Kvashnin, A.G., Kvashnin, D.G., Jun, L., Yakobson, B.I., and Ajayan, P.M, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett., 2010, vol. 8, no. 10, pp. 3209–3215.

    Google Scholar 

  29. Zimina, T, Nobel prize in physics 2010: new face of a carbon, Nauka Zhizn’, 2010, no. 11, pp. 2–5.

    Google Scholar 

  30. Bresnehan, M.S., Hollander, M.J., Wetherington, M., LaBella, M., Trumbull, K.A., Cavalero, R., Snyder, D.W., and Robinson, J.A, Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices, ACS Nano, 2012, vol. 6, no. 6, pp. 5234–5241.

    Google Scholar 

  31. Das, S., Gulotty, R., Anirudha Sumant, V., and Roelofs, A, All two-dimensional, flexible, transparent, and thinnest thin film transistor, ACS Nano, 2014, vol. 14, no. 5, pp. 2861–2866.

    Google Scholar 

  32. Zhao, P., Feenstra, R.M., Gu, G., and Jena, D., SymFET: a proposed symmetric graphene tunneling field effect transistor, IEEE Trans. Electron. Dev., 2013, p. 951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shakhnov.

Additional information

Original Russian Text © A.I. Vlasov, D.S. Terent’ev, V.A. Shakhnov, 2017, published in Mikroelektronika, 2017, Vol. 46, No. 3, pp. 210–218.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, A.I., Terent’ev, D.S. & Shakhnov, V.A. Graphene flexible touchscreen with integrated analog-digital converter. Russ Microelectron 46, 192–199 (2017). https://doi.org/10.1134/S1063739717030118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739717030118

Navigation