Skip to main content
Log in

Thin-film positive electrode based on vanadium oxides for lithium-ion accumulators

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

An Erratum to this article was published on 22 July 2017

This article has been updated

Abstract

The results of the experiments on the development of positive thin-film electrodes for lithium-ion accumulators based on vanadium oxides are presented. The deposition modes and controlling methods of the structure and phase composition of the films, diagnostics methods of the structure and phase composition, and the results of the electrochemical tests of the positive electrodes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 22 July 2017

    An erratum to this article has been published.

References

  1. Bates, J.B., Dudney, N.J., Lubben, D.C., Gruzalski, G.R., Kwak, B.S., Xiaohua, Yu., and Zuhr, R.A., Thin-film rechargeable lithium batteries, J. Power Sources, 1995, vol. 54, p. 58.

    Article  Google Scholar 

  2. Wang, B., Bates, J.B., Hart, F.X., Sales, B.C., Zuhr, R.A., and Robertson, J.D., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, J. Electrochem. Soc., 1996, vol. 143, p. 3203.

    Article  Google Scholar 

  3. Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., and Evans, C.D., Thin-film lithium and lithium-ion batteries, Solid State Ionics, 2000, vol. 135, p. 33.

    Article  Google Scholar 

  4. Dudney, N.J. and Neudecker, B.J., Solid state thinfilm lithium battery systems, Curr. Opin. Solid State Mater. Sci., 1999, vol. 4, p. 479.

    Article  Google Scholar 

  5. Jones, S.D. and Akridge, J.R., A thin film solid state microbattery, Solid State Ionics, 1992, vols. 53–56, p. 628.

    Article  Google Scholar 

  6. Yamaki, J.-I., Ohtsuka, H., and Shoda, T., Rechargeable lithium thin film cells with inorganic electrolytes, Solid State Ionics, 1996, vols. 86–88, p. 1279.

    Article  Google Scholar 

  7. Baba, M., Kumagai, N., Kobayashi, H., Nakano, O., and Nishidate, K., Fabrication and electrochemical characteristics of all-solid-state lithium-ion batteries using V2O5 thin films for both electrodes, Electrochem. Solid-State Lett., 1999, vol. 2, p. 320.

    Article  Google Scholar 

  8. Kumagai, N., Kitamoto, H., Baba, M., Durand-Vidal, S., Devilliers, D., and Groult, H., Intercalation of lithium in r.f.-sputtered vanadium oxide film as an electrode material for lithium-ion batteries, J. Appl. Electrochem., 1997, vol. 28, p. 41.

    Article  Google Scholar 

  9. Kanehori, K., Matsumoto, K., Miyauchi, K., and Kudo, T., Thin film solid electrolyte and its application to secondary lithium cell, Solid State Ionics, 1983, vols. 9–10, p. 1445.

    Article  Google Scholar 

  10. Berdnikov, A.E., Gerashchenko, V.N., Gusev, V.N., Kulova, T.L., Metlitskaya, A.V., Mironenko, A.A., Rudyi, A.S., and Skundin, A.M., A silicon-containing nanocomposite for a thin-film lithium-ion battery, Tech. Phys. Lett., 2013, vol. 39, no. 7, pp. 350–352.

    Article  Google Scholar 

  11. Kulova, T.L., Skundin, A.M., Andreev, V.N., Gryzlov, D.Yu., Mironenko, A.A., Rudyi, A.S., Gusev, V.N., and Naumov, V.V., Study of thin-film electrodes of the system Si–Al–O for lithium-ion battery, Elektrokhim. Energet., 2013, no. 3, pp. 136–143.

    Google Scholar 

  12. Wriedt, H.A., The O–V (oxygen–vanadium) system, Bull. Alloy Phase Diagramm, 1989, vol. 10, no. 3, pp. 271–277.

    Article  Google Scholar 

  13. Navone, C., Baddour-Hadjean, R., Pereira-Ramos, J.P., and Salot, R., High-performance oriented thin films prepared by DC sputtering for rechargeable lithium microbatteries, J. Electrochem. Soc., 2005, vol. 152, no. 9, pp. A1790–A1796.

    Article  Google Scholar 

  14. Navone, C., Baddour-Hadjean, R., Pereira-Ramos, J.P., and Salot, R., A kinetic study of electrochemical lithium insertion into oriented V2O5 thin films prepared by rf sputtering, Electrochim. Acta, 2008, vol. 53, pp. 3329–3336.

    Article  Google Scholar 

  15. Production method of pozitive electrode for lithiumion battery and lithium-ion battery, RF Patent RU2526239, Byull. Izobret., 2014, no. 23.

  16. Londoño-Calderón, C.L., Vargas-Hernández, C., and Jurado, J.F., Desorption influence of water on structural, electrical properties and molecular order of vanadium pentoxidexerogel films, Rev. Mex. Fis., 2010, vol. 56, no. 5, pp. 411–415.

    Google Scholar 

  17. Xie, S., Iglesia, E., and Bell, A.T., Effects temperature on the Raman spectra and dispersed oxides, J. Phys. Chem. B, 2001, vol. 105, pp. 5144–5152.

    Article  Google Scholar 

  18. Lee, S.-H., Cheong, H.M., Seong, M.J., Liu, P., Tracy, C.E., Mascarenhas, A., Pitts, J.R., and Deb, S.K., Raman spectroscopic studies of amorphous vanadium oxide thin films, Solid State Ionics, 2003, vol. 165, pp. 111–116.

    Article  Google Scholar 

  19. Baddour-Hadjean, R., Navone, C., and Pereira-Ramos, J., In situ Raman microspectrometry investigation of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films, Elecrochim. Acta, 2009, vol. 54, pp. 6674–6679.

    Article  Google Scholar 

  20. Roozeboom, F., Mittelmeijer-Hazeleger, M., Moulijn, J., and Medema, J., de Beer, V., and Gellings, P., Vanadium oxide monolayer catalysts. 3. A Raman spectroscopic and temperature-programmed reduction study of monolayer and crystal-type vanadia on various supports, J. Phys. Chem., 1980, vol. 84, no. 21, pp. 2783–2791.

    Article  Google Scholar 

  21. Shadrin, E.B., Il’inskii, A.V., Sidorov, A.I., and Khanin, S.D., Size effects upon phase transitions in vanadium oxide nanocomposites, Phys. Solid State, 2010, vol. 52, no. 11, pp. 2426–2433.

    Article  Google Scholar 

  22. Rama, N. and Ramachandra Rao, M., Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique, Solid State Commun., 2010, vol. 150, pp. 1041–1044.

    Article  Google Scholar 

  23. Schilbe, P., Raman scattering in VO2, Physica B, 2002, vols. 316–317, pp. 600–602.

    Article  Google Scholar 

  24. Zhang, Z., Gao, Y., Luo, H., Kang, L., Chen, Z., Du, J., Kanehira, M., Zhanga, Y., and Wang, Z.L., Solutionbased fabrication of vanadium dioxide on F: SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications, Energy Environ. Sci., 2011, vol. 4, no. 10, pp. 4290–4297.

    Article  Google Scholar 

  25. Chen, M.-H., Xia, X.-H., Yuan, J.-F., Yin, J.-H. and Chen, Q.-G., Free-standing three-dimensional continuous multilayer V2O5 hollow sphere arrays as highperformance cathode for lithium batteries, J. Power Sources, 2015, vol. 288, pp. 145–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rudyi.

Additional information

Original Russian Text © S.V. Vasil’ev, V.N. Gerashchenko, T.L. Kulova, M.E. Lebedev, L.A. Mazaletskii, A.V. Metlitskaya, A.A. Mironenko, S.B. Moskovskii, N.F. Nikol’skaya, D.E. Pukhov, A.S. Rudyi, A.M. Skundin, V.A. Sologub, I.S. Fedorov, A.B. Churilov, 2016, published in Mikroelektronika, 2016, Vol. 45, No. 5, pp. 363–373.

An erratum to this article is available at https://doi.org/10.1134/S1063739717440020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, S.V., Gerashchenko, V.N., Kulova, T.L. et al. Thin-film positive electrode based on vanadium oxides for lithium-ion accumulators. Russ Microelectron 45, 335–344 (2016). https://doi.org/10.1134/S1063739716050115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739716050115

Navigation