Skip to main content
Log in

Electrical parameters and concentrations of charged particles in methane plasma

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The steady-state parameters and the composition of the dc glow discharge plasma (p = 40–200 Pa, i = 30–70 mA) in methane are investigated by the probe diagnostics and mathematical modeling when solving the Boltzmann kinetic equation. The data on the reduced electric field strength, the electron energy distributions, the rate constants of the processes during the electron impact, the concentrations of charged particles, and the densities of their fluxes on the surface, which restrict the plasma region, are obtained. It is established that the associative electron detachment from the negative ion H + R → H-R + e (where R = H, CH3, CH2, CH ...) substantially affects the balance of the charged particles in the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gottardi, G., Laidani, N., Bartali, R., Micheli, V., and Anderle, M., Plasma enhanced chemical vapor deposition of a-C:H film in CH4-CO2 plasma: gas composition and substrate biasing effect on the film structure and growth process, Thin Solid Films, 2008, vol. 516, pp. 3910–3918.

    Article  Google Scholar 

  2. Pintassilgo, C.D., Cernogora, G., and Loureiro, J., Spectroscopy study and modeling of an afterglow created by a low-pressure pulsed discharge in N2-CH4, Plasma Sources Sci. Technol., 2001, vol. 10, pp. 147–161.

    Article  Google Scholar 

  3. Moller, I., Serdyuchenko, A., and Soltwisch, H., Analysis of the chemistry in CH4/O2 plasmas by means of absorption spectroscopy and a simple numerical model, J. Appl. Phys., 2006, vol. 100, p. 033302.

    Article  Google Scholar 

  4. Houlet, L., Rhallabi, A., and Turban, G., Microscopic modeling of InP etching in CH4-H2 plasma, J. Vac. Sci. Technol. A, 1999, vol. 17, no. 5, pp. 2598–2606.

    Article  Google Scholar 

  5. Kim, H.K., Lin, H., and Ra, Y., Etching mechanism of a GaN/InGaN/GaN heterostructure in Cl2- and CH4-based inductively coupled plasmas, J. Vac. Sci. Technol. A, 2004, vol. 22, no. 3, pp. 598–601.

    Article  Google Scholar 

  6. Rhallabi, A., Houlet, L., and Turban, G., Estimation of surface kinetic parameters and two-dimensional simulation of InP pattern features during CH4-H2 plasma etching, J. Vac. Sci. Technol. A, 2000, vol. 18, no. 4, pp. 1366–1372.

    Article  Google Scholar 

  7. Lim, W.T., Stafford, L., Song, J.I., et al., High-density plasma etching of indium-zinc oxide films in Ar/Cl2 and Ar/CH4/H2 chemistries, Appl. Surf. Sci., 2006, vol. 253, pp. 2752–2757.

    Article  Google Scholar 

  8. Mohasseb, F., Hassouni, K., Bénédic, F., Lombardi, G., and Gicquel, A., Modelling of Ar/H2/CH4 microwave discharges used for nanocrystalline diamond growth, Synthesis, Properties and Applications of Ultrananocrystalline Diamond, 2005, pp. 93–108.

    Chapter  Google Scholar 

  9. Dong, L.-F., Ma, B.-Q., and Wang, Z.-J., Electron behavior in CH4/H2 gas mixture in electron-assisted chemical vapour deposition, Chin. Phys. Soc., 2005, vol. 13, no. 10, pp. 1597–1600.

    Google Scholar 

  10. Bera, K., Farouk, B., and Vitello, P., Inductively coupled radio frequency methane plasma simulation, J. Appl. Phys., 2001, vol. 34, pp. 1479–1490.

    Google Scholar 

  11. Hassouni, K., Lombardi, G., Duten, X., et al., Overview of the different aspects in modeling moderate pressure H2 and H2/CH4 microwave discharges, Plasma Sources Sci. Technol., 2006, vol. 15, pp. 117–125.

    Article  Google Scholar 

  12. Moller, W., Plasma and surface modeling of the deposition of hydrogenated carbon films from low-pressure methane plasmas, J. Appl. Phys., 1993, vol. A56, pp. 527–546.

    Article  Google Scholar 

  13. Rudenko, K.V., Makon’kikh, A.V., Orlikovskii, A.A., and Pustovit, A.N., New method for the langmuir probe diagnostics of polymerizing plasmas, Russian Microelectronics, 2007, vol. 36, no. 1, pp. 14–26.

    Article  Google Scholar 

  14. Titov, V.A., Rybkin, V.V., Maximov, A.I., and Choi, H.-S., Characteristics of atmospheric pressure air glow discharge with aqueous electrolyte cathode, Plasma Chem. Plasma Process, 2005, vol. 25, no. 5, pp. 503–517.

    Article  Google Scholar 

  15. Semenova, O.A., Efremov, A.M., and Svettsov, V.I., Kinetic and transport process characteristics under the electron impact in the methane plasma, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, no. 7, pp. 44–47.

    Google Scholar 

  16. Lide, D.R., CRC Handbook of Chemistry and Physics, New York: CNR, 1998–1999.

    Google Scholar 

  17. Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.

    Google Scholar 

  18. Chantry, P.J., A simple formula for diffusion calculations involving wall reflection and low density, J. Appl. Phys., 1987, vol. 62, pp. 1141–1148.

    Article  Google Scholar 

  19. Peart, B., Walton, D.S., and Dolder, T., Electron detachment from Hions by electron impact, J. Phys. B.: Atom. Molec. Phys., 1970, vol. 3, pp. 1346–1356.

    Article  Google Scholar 

  20. Glover, S.C., Savin, D.W., and Jappsen, A.-K., Cosmological implications of the uncertainty in H destruction rate coefficients, Astrophys. J., 2006, vol. 640, pp. 553–568.

    Article  Google Scholar 

  21. Oda, A., Suda, Y., and Okita, A., Numerical analysis of pressure dependence on carbon nanotube-growth in CH4/H2 plasmas, Thin Solid Films, 2008, vol. 516, pp. 6570–6574.

    Article  Google Scholar 

  22. Gogolides, D., Mary, D., Rhallabi, A., and Turban, G., RF plasmas in methane: prediction of plasma properties and neutral radical densities with combined gasphase physics and chemistry model, Jpn. J. Appl. Phys., 1995, vol. 34, pp. 261–270.

    Article  Google Scholar 

  23. Herrebout, D., Bogaerts, A., Yan, M., et al., Onedimensional fluid model for an RF methane plasma of interest in deposition of diamond-like carbon layers, J. Appl. Phys., 2001, vol. 90, no. 2, pp. 570–579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Semenova.

Additional information

Original Russian Text © O.A. Semenova, A.M. Efremov, S.M. Barinov, A.A. Kuchumov, V.I. Svetsov, 2013, published in Mikroelektronika, 2013, Vol. 42, No. 5, pp. 375–382.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenova, O.A., Efremov, A.M., Barinov, S.M. et al. Electrical parameters and concentrations of charged particles in methane plasma. Russ Microelectron 42, 301–308 (2013). https://doi.org/10.1134/S1063739713040057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739713040057

Keywords

Navigation