Skip to main content
Log in

Optical monitoring of substrate temperature and etching speed of multilayered structures during plasmochemical etching

  • Microelectronic Processes and Materials
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Using weakly coherent tandem interferometry, the possibility of simultaneous temperature and film thickness measurements in plasmochemical etching processes of silicon on insulator structure is demonstrated. It is shown that changes of the structure’s total optical thickness related to temperature variation can be separated from a change of the physical film thickness. For that purpose we have to take in account changes of zeros interference peak amplitude caused by changes of the interferentional conditions inside the film when its thickness is changing. Temperature measurement precision is ±1°C. Thickness measurement precision is ±10 nm. The results of process monitoring closely correlate with the results of a stair’s profile obtained with a profilometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cardinaud, C., Peignon, M.-C., and Tessier, P.-Y., Plasma etching: principles, mechanisms, application to micro- and nano-technologies, Applied Surface Science, 2000, pp. 72–83.

  2. Coburn, J.W., Surface-science aspects of plasma-assisted etching Appl. Phys., 1994, v. 59, n. 5, pp. 451–458.

    Article  Google Scholar 

  3. Guo, W. and Sawin, H.H., Review of profile and roughening simulation in microelectronics plasma etching J. Phys. D: Appl. Phys, 1999, v. 42, p. 194014.

    Article  Google Scholar 

  4. Gabriel, C.T. and Yeh, E.K., In Situ Wafer Temperature Measurement during Plasma Etching Solid State Technol., 1999, no. 10, pp. 99–107.

  5. Lee, S., Tien, Y.-C., and Chang, Y.-W., Effect of Wafer Temperature on High Aspect Ratio Hardmask Etching Plasma Chem. Plasma Process., 2002, vol. 22, no. 4, pp. 627–637.

    Article  Google Scholar 

  6. Anderson, R.L., Review of temperature measurements in the semiconductor industry Proc. SPIE-Int. Soc. Opt. Eng., 1990, vol. 1392 A., pp. 437–451.

    Google Scholar 

  7. Hussla, I., Enke, K., Grunwald, H., Lorenz, G., Stoll, H., In situ silicon-wafer temperature measurements during RF argon-ion plasma etching via fluoroptic thermometry J. Phys. D: Appl. Phys, 1987, n. 20, pp. 889–896.

  8. Pearsall, T.P., Saban, St.R., Booth, J.B., Barrett T., and Johnson, S.R., Precision of noninvasive temperature measurement by diffuse reflectance spectroscopy Rev. Sci. Instrum., 1995, n. 10, pp. 4977–4980.

  9. Stafford, A.; Irvine, S. J. C.; Hess, K. L.; Bajaj, J. et al., The use of in situ laser interferometry for MOCVD process control Semicond. Sci. Technol., 1998, n. 13, pp. 1407–1411.

  10. Luk’yanov, A.Yu.; Novikov, M.A.; Skolotov, O.V.; Shashkin, V.I., (Non-contact optical inspection of the growth rate and temperature during metallorganic vapor phase epitaxy, Pis’ma Zh. Tekh. Fiz., 1993, vol. 19, no. 1, p. 7.

    Google Scholar 

  11. Magunov, A.N., Lazernaya termometriya tverdykh tel, in (Laser Thermometry of Solids), Moscow: Fizmatlit, 2001.

    Google Scholar 

  12. Deatcher, C. J., Liu, C., Pereira, S., Lada, M., Cullis, A.G., Sun, Y. J., Brandt, O., and Watson, I.M., In situ optical reflectometry applied to growth of indium gallium nitride epilayers and multi-quantum well structures Semicond. Sci. Technol., 2003, pp. 212–218.

  13. Volkov, P.V., Goryunov, A.V., Tertyshnik, A.D., Khrykin, O.I., Shashkin, V.I., Novel technique for monitoring of MOVPE processes. J. Cryst. Growth, 2008, v. 310, pp. 4724–4726.

    Article  Google Scholar 

  14. Volkov, P.V., Goryunov, A.V., Danil’tsev, V.M., Luk’yanov, A.Yu., Pryakhin, D.A., Tertyshnik, A.D., Khrykin, O.I., and Shashkin, V.I., Optical monitoring of technological parameters in metal-organic vapor-phase epitaxy. Surf. Invest.: X-ray, Synchrotron Neutron Techn., Vol. 2, no. 4. pp. 587–591.

  15. Koshimizu, C; Ohta, T.; Matsudo, T.; Tuchitani, S.; and Ito, M., Low-Coherence Interferometry-Based Non-Contact Temperature Monitoring of a Silicon Wafer and Chamber Parts during Plasma Etching Applied Physics Express, 2010, vol. 3, p. 056201 (3 pages).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Volkov.

Additional information

Original Russian Text © P.V. Volkov, A.V. Goryunov, A.U. Lukyanov, D.A. Pryakhin, A.D. Tertyshnik, V.I. Shashkin, 2011, published in Mikroelektronika, 2011, Vol. 40, No. 5, pp. 331–338

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, P.V., Goryunov, A.V., Lukyanov, A.U. et al. Optical monitoring of substrate temperature and etching speed of multilayered structures during plasmochemical etching. Russ Microelectron 40, 309–315 (2011). https://doi.org/10.1134/S1063739711050106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739711050106

Keywords

Navigation