Skip to main content
Log in

Determination of the size of vacancy-type defects in angstrom ranges by positron annihilation spectroscopy

  • Measurements
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A technique for determining the sizes of vacancies and pores in metals by positron annihilation spectroscopy (PAS) in the angstrom and nanometer ranges is proposed. Following the proposed technique, the radii of vacancy-type defects in iron are estimated. The obtained results are of special interest for research programs in which properties of critical engineering materials [49–55] are studied using beams of slow positrons at positron facilities (see Research Program at the LEPTA Facility, I. Meshkov for LEPTA collaboration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slugen, V., Segers, D., de Bakker, P.M.A., de Grave, E., Magula, V., van Hoecke, T., and van Waeyenberge, B., Annealing Behaviour of Reactor Pressure-Vessel Steels Studied by Positron-Annihilation Spectroscopy, Mössbauer Spectroscopy And Transmission Electron Microscopy, J. Nucl. Mater., 1999, vol. 274, no. 3, pp. 273–286.

    Article  Google Scholar 

  2. Zeman, A., Debarberis, L., Kupča, L., Acosta, B., Kytka, M., and Degmová, A., Study of Radiation-Induced Degradation of RPV Steels and Model Alloys by Positron Annihilation and Mössbauer Spectroscopy, J. Nucl. Mater., 2007, vol. 360, no. 3, pp. 272–281.

    Article  Google Scholar 

  3. Lambrecht, M. and Almazouzi, A., Positron Annihilation Study of Neutron Irradiated Model Alloys and of a Reactor Pressure Vessel Steel, J. Nucl. Mater., 2009, vol. 385, no. 2, pp. 334–338.

    Article  Google Scholar 

  4. Slugeögel, G., Sperr, P., and Triftshäuser, W., Positron Annihilation Studies of Neutron Irradiated and Thermally Treated Reactor Pressure Vessel Steels, J. Nucl. Mater., 2002, vol. 302, nos. 2–3, pp. 89–95.

    Google Scholar 

  5. Sluge Positron Annihilation Studies of Neutron Irradiated and Thermally Treated Reactor Pressure Vessel Steels, NDT & E Int., 2004, vol. 37, no. 8, pp. 651–661.

  6. Belyaev, V.N. and Metelitsin, V.V., Using of Slow Positrons in Various Investigations-State of the Art and Perspectives, Nucl. Instrum. Methods Phys. Res., Sect. A, 2000, vol. 448, nos. 1–2, pp. 89–93.

    Article  Google Scholar 

  7. Debarberis, L., Kryukov, A., Erak, D., Kevorkyan, Yu., and Zhurko, D., Advanced Method for WWER RPV Embrittlement Assessment, Int. J. Press. Vessels Piping, 2004, vol. 81, no. 8, pp. 695–701.

    Article  Google Scholar 

  8. Nishiyama, Y., Onizawa, K., Suzuki, M., Anderegg, J.W., Nagai, Y., Toyama, T., Hasegawa, M., and Kameda, J., Effects of Neutron-Irradiation-Induced Intergranular Phosphorus Segregation and Hardening on Embrittlement in Reactor Pressure Vessel Steels, Acta Mater., 2008, vol. 56, no. 16, pp. 4510–4521.

    Article  Google Scholar 

  9. Egger, W., Sperr, P., Kögel, G., and Dollinger, G., Pulsed Low Energy Positron System (PLEPS) at the Munich Research Reactor FRM II. Phys. Status Solidi C, 2007, vol. 4, no. 10, pp. 3969–3972.

    Article  Google Scholar 

  10. Grafutin, V.I. and Prokop’ev, E.P., Positron Annihilation Spectroscopy in Materials Structure Studies, Phys. Usp., 2002, vol. 45, no. 1, pp. 59–74.

    Article  Google Scholar 

  11. Chaplygin, Yu.A., Grafutin, V.I., Svetlov-Prokopiev, E.P., and Timoshenkov, S.P., Positronics and Nanotechnologies: Possibilities of Studying Nano-Objects in Technically Important Materials and Nanomaterials, in Advances in Nanotechnology, Chen, E.J. and Peng, N., Eds., New York: Nova Sci. Publ., 2010, vol. 1, pp. 191–208.

    Google Scholar 

  12. McKenzie, S. and Totten, G.E., Analytical Characterization of Aluminum, Steel, and Superalloys, ISBN 9780824758431, 2005, pp. 667–668.

  13. Kirkegaard, P., Pedersen, N.J., and Eldrup, M., PAT-FIT-88. Report RIS no. O-M-2740, 1989.

  14. Grafutin, V.I., Grishkin, V.L., Myasishcheva, G.G., Funtikov, Yu.V., and Novikov, Yu. A., Positron Annihilation in Polycrystalline Metals, Phys. Solid State, 1998, vol. 40, pp. 549–551.

    Article  Google Scholar 

  15. Grafutin, V.I., Prokop’ev, E.P., Myasishcheva, G.G., and Funtikov, Yu.V., Properties of Positron Annihilation in Metals, Phys. Solid State, 1999, vol. 41, pp. 843–847.

    Article  Google Scholar 

  16. Prokop’ev, E.P., Grafutin, V.I., Timoshenkov, S.P., and Funtikov, Yu.V., Determination of the Size of Nanoobjects in Porous Systems and Defect Solid Bodies 1, Integral, 2008, no. 6, pp. 4–6; Determination of the Size of Nanoobjects in Porous Systems and Defect Solid Bodies 2, Integral, 2009, no. 1, pp. 10–12.

  17. Timoshenkov, S.P., Prokop’ev, E.P., Kalugin, V.V., et al., Positronics and Nanotechnologies: Determination of the Radius of Nanoobjects in Porous Systems and Some Defect Materials by the PAS Method. I, Oboronnyi kompleks, 2008, no. 4, pp. 28–36.

  18. Timoshenkov, S.P., Prokop’ev, E.P., Grafutin, V.I., et al., Positronics and Nanotechnologies: Determination of the Radius of Nanoobjects in Porous Systems and Some Defect Materials by the PAS Method. II, Oboronnyi kompleks, 2008, no. 4, pp. 36–43.

  19. Grafutin, V.I., Ilyukhina, O.V., Myasishcheva, G.G., Prokopiev, E.P., Timoshenkov, S.P., Funtikov, Yu.V., and Burcl, R., Positronics and Nanotechnologies: Possibilities of Studying Nanoobjects in Materials and Nanomaterials by the Method of Positron-Annihilation Spectroscopy, Phys. At. Nucl., 2009, vol. 72, no. 10, pp. 1672–1681.

    Article  Google Scholar 

  20. Grafutin, V.I., Prokop’ev, E.P., Timoshenkov, S.P., Evstaf’ev, S.S., and Funtikov, Yu.V., Positronics and Nanotechnologies: Possibilities of Studying Nanoobjects in Critical Engineering Materials Using Positron Annihilation Spectrometry, Russian Microelectronics, 2009, vol. 38, no. 6, pp. 418–428.

    Article  Google Scholar 

  21. Grafutin, V.I., Ilyukhina, O.V., Myasishcheva, G.G., Prokopiev, E.P., Timoshenkov, S.P., Funtikov, Yu.V., Positronics of Nanoobjects in Porous and Defective Silicon- and Quartz-Based Systems, Ukr. Fiz. Zh., 2009, vol. 54, no. 5, pp. 443–453.

    Google Scholar 

  22. Grafutin, V.I., Prokop’ev, E.P., Timoshenkov, S.P., and Funtikov, Yu.V., Determination of nanoobject sizes in porous systems, nanomaterials, and some defective materials using the positron annihilation spectroscopy method (survey), Inorg. Mat., 2010, vol. 46, no. 14, pp. 1545–1554.

    Article  Google Scholar 

  23. Grafutin, V.I., Grushevskii, A.V., Zaluzhnyi, A.G., et al., Determination of the Size of Nanoobjects in Some Defect and Porous Systems by the Method of Positron Annihilation, Probl. Chernoi Metallurg. Mater., 2009, no. 2, pp. 74–80.

  24. Grafutin, V.I., Prokop’ev, E.P., Timoshenkov, S.P., and Funtikov, Yu.V., Determination of Radii of Nanoobjects in Porous Systems and Some Defective Materials by Positron Annihilation Spectroscopy, Poverkhn. Rentgen., Sinkhrotron. Neitron., 2009, no. 12, pp. 24–32.

  25. Grafutin, V.I., Prokop’ev, E.P., Timoshenkov, S.P., and Funtikov, Yu.V., Determination of Radii of Nanoobjects in Porous Systems and Some Defective Materials by Positron Annihilation Spectroscopy, J. Surf. Investig., 2009, vol. 3, no. 6, pp. 917–925.

    Article  Google Scholar 

  26. Burcl, R., Grafutin, V.I., Ilyukhina, O.V., Myasishcheva, G.G., Prokopiev, E.P., et al., Possibilities of Studying Nanoobjects in Porous Silicon and Silicon Substrates Irradiated with Protons by Positron Annihilation Spectroscopy, Phys. Solid State, 2010, vol. 52, no. 4, pp. 700–705.

    Article  Google Scholar 

  27. Prokop’ev, E.P., A Simple Model of the Bound Positron State at Metal Vacancies, Radiatsionnye defekty v metallakh. Materialy 2 Vsesoyuznogo soveshchaniya (Proc. 2nd All-Union Conf. Radiation Defects in Metals), Alma-Ata, 1980, pp. 59–62.

  28. Prokop’ev, E.P., Diffusion-Annihilation Model of Disintegration of Positron States on Spherical Defects in Metals, Pis’ma Zh. Tekh. Fiz., 2005, vol. 81, nos. 11–12, p. 680.

    Google Scholar 

  29. Puska, M.J. and Nieminen, R.M., Theory of Positrons in Solids and on Solid Surfaces, Rev. Mod. Phys., 1994, vol. 66, p. 841.

    Article  Google Scholar 

  30. Hautojärvi, P., Pöllönen, L., Vehanen, A., and Yli-Kauppila, J., Vacancies and Carbon Impurities in α-Iron: Neutron Irradiation, J. Nucl. Mater., 1983, vol. 114, nos. 2–3, pp. 250–259.

    Article  Google Scholar 

  31. Vehanen, A., Hautojärvi, P., Johansson, J., Yli-Kauppila, J., and Moser, P., Vacancies and Carbon Impurities in α-Iron: Electron Irradiation, Phys. Rev. B: Condens. Matter, 1982, vol. 25, pp. 762–780.

    Article  Google Scholar 

  32. Brauer, G., Sob, M., and Kočik, J., Report ZfK-647, 1990.

  33. Jun, Xu, Liu, C.T., Miller, M.K., and Chen, H., Nanocluster-Associated Vacancies in Nanocluster-Strengthened Ferritic Steel as Seen via Positron-Lifetime Spectroscopy, Phys. Rev. B: Condens. Matter, 2009, vol. 79, p. 020204(R).

    Google Scholar 

  34. Fu, C.L., Krěmar, M., Painter, G.S., and Chen, Xing-Qiu, Vacancy Mechanism of High Oxygen Solubility and Nucleation of Stable Oxygen-Enriched Clusters in Fe, Phys. Rev. Lett., 2007, p. 225502.

  35. Druzhkov, A.P., Perminov, D.A., Arbuzov, V.L., Stepanova, N.N., and Pechorkina, N.L., Positron Confinement in Intermetallic Nanoparticles Embedded in Fe-Ni-Al Material, J. Phys.: Condens. Matter, 2004, vol. 16, pp. 6395–6404.

    Article  Google Scholar 

  36. Druzhkov, A.P., Perminov, D.A., and Arbuzov, V.L., J. Phys.: Condens. Matter, 2004, vol. 16, pp. 365–377.

    Article  Google Scholar 

  37. Jiang, Yong, Smith, J.R., and Odette, G.R., Formation of Y-Ti-O Nanoclusters in Nanostructured Ferritic Alloys: A First-Principles Study, Phys. Rev. B: Condens. Matter, 2009, vol. 79, p. 064103.

    Article  Google Scholar 

  38. Druzhkov, A.P., Perminov, D.A., and Davletshin, A.E., The Effect of Alloying Elements on the Vacancy Defect Evolution in Electron-Irradiated Austenitic Fe-Ni Alloys Atudied by Positron Annihilation, J. Nucl. Mater., 2009, vol. 384, pp. 56–60.

    Article  Google Scholar 

  39. Cižek, J., Bečvař, F., and Procházka, I., Three-Detector Setup for Positron-Lifetime Spectroscopy of Solids Containing 60Co Radionuclide, Nucl. Instrum. Methods Phys. Res., Sect. A, 2000, vol. 450, nos. 2–3, pp. 325–337.

    Google Scholar 

  40. Krsjak, V., et al., Application of Positron Annihilation Spectroscopy on the Ion Implantation Damaged Fe-Cr Alloys, Appl. Surf. Sci., 2008, vol. 255, no. 1, pp. 153–156.

    Article  Google Scholar 

  41. Kočik, J., Keilová, E., Cižek, J., and Procházka, I., TEM and PAS Study of Neutron Irradiated VVER-Type RPV Steels, J. Nucl. Mater., 2003, vol. 303, no. 1, pp. 52–64.

    Google Scholar 

  42. Mori, G., Electrons around a Vacancy in Simple Metals, J. Phys. F: Met. Phys., 1977, vol. 7, no. 1, pp. L7–L14.

    Article  Google Scholar 

  43. Sluge Reactor Steels by Positron Annihilation, Nucl. Eng. Des., 2005, vol. 235, pp. 1961–1967.

  44. Puska, M.J. and Nieminen, R.M., Theory of Positrons in Solids and on Solid Surfaces, Rev. Mod. Phys., 1994, vol. 66, no. 3, p. 841–897.

    Article  Google Scholar 

  45. Dannefaer, S., Defect and Oxygen in Silicon Studied by Positron, Phys. Status Solidi A, 1987, vol. 102, no. 2, pp. 481–491.

    Article  Google Scholar 

  46. Puff, V., Dannefaer, V., Master, S., and Kerr, D.P., Defect Characteristics in Different Crystallographic Directions in Cz-Si as a Function of Doping and Annealing, Phys. Status Solidi A, 1987, vol. 102, no. 2, pp. 527–531.

    Article  Google Scholar 

  47. Tao, S.J., Positronium Annihilation in Molecular Substances, J. Chem. Phys., 1972, vol. 56, no. 11, pp. 5499–5510.

    Article  Google Scholar 

  48. Jean, Y.C., Positron Annihilation Spectroscopy for Chemical Analysis: A Novel Probe for Microstructural Analysis of Polymers, Microchem. J., 1990, vol. 42, pp. 72–102.

    Article  MathSciNet  Google Scholar 

  49. Amarendra, G., Rajaraman, R., Venugopal R.G., Nair, K.G.M., Viswanathan, B., Suzuki, R., Ohdaira, T., and Mikado, T., Identification of Open-Volume Defects in Disordered and Amorphized Si: A Depth-Resolved Positron Annihilation Study, Phys. Rev. B: Condens. Matter, 2001, vol. 63, no. 22, p. 224112.

    Article  Google Scholar 

  50. SlugeWhat Kind of Information We Can Obtain from Positron Annihilation Spectroscopy? European Commission EUR 22468 EN-DG JRC, Institute for Energy Luxembourg: Office for Official Publications of the European Communities, 2006.

  51. Deng, Q. and Jean, Y.C., Free-Volume Distributions of an Epoxy Polymer Probed by Positron Annihilation: Pressure Dependence, Macromolecules, 1993, vol. 26, no. 1, pp. 30–34.

    Article  Google Scholar 

  52. Schaefer, H.-E., Investigation of Thermal Equilibrium Vacancies in Metals by Positron Annihilation, Phys. Status Solidi A, 1987, vol. 102, no. 1, pp. 47–65.

    Article  Google Scholar 

  53. Dannefaer, S., Defect and Oxygen in Silicon Studied by Positron, Phys. Status Solidi A, 1987, vol. 102, no. 2, pp. 481–491.

    Article  Google Scholar 

  54. Fuhs, W., Holzhauer, U., Mantl, S., Richter, F.W., and Sturm, R., Annihilation of Positrons in Electron-Irradiated Silicon Crystals, Phys. Status Solidi B, 1978, vol. 89, no. 1, pp. 69–75.

    Article  Google Scholar 

  55. Grafutin, V.I., Mamedov, T.N., Meshkov, I.N., et al., Possibilities of Studying Porous Systems and Nanomaterials by the Method of Positron Annihilation Spectroscopy, in Yadernaya fizika i nanotekhnologii. Yaderno-fizicheskie aspekty formirovaniya, izucheniya i primeneniya nanostruktur (Nuclear Physics and Nanotechnologies. Nuclear Physics Aspects of Formation, Studying, and Application of Nanostructures), Sisakyan, A.N., Ed., Dubna: Joint Institute for Nuclear Research, 2008, pp. 223–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Grafutin.

Additional information

Original Russian Text © V.I. Grafutin, I.N. Meshkov, E.P. Prokop’ev, N.O. Khmelevskii, S.L. Yakovenko, 2011, published in Mikroelektronika, 2011, Vol. 40, No. 6, pp. 468–475.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grafutin, V.I., Meshkov, I.N., Prokop’ev, E.P. et al. Determination of the size of vacancy-type defects in angstrom ranges by positron annihilation spectroscopy. Russ Microelectron 40, 428–435 (2011). https://doi.org/10.1134/S1063739711050039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739711050039

Keywords

Navigation