Skip to main content
Log in

Microfluidics Approaches in Modern Developmental Biology

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Modern automated microsystems based on microhydrodynamic (microfluidic) technologies— labs on chips—make it possible to solve various basic and applied research problems. In the last 15 years, the development of these approaches in application to the problems of modern quantitative (systems) development biology has been observed. In this field, high-throughput experiments aimed at accumulating ample quantitative data for their subsequent computer analysis are important. In this review, the main directions in the development and application of microfluidics approaches for solving problems of modern developmental biology using the classical model object, Drosophila embryo, as an example is discussed. Microfluidic systems provide an opportunity to perform experiments that can hardly be performed using other approaches. These systems allow automated, rapid, reliable, and proper placing of many live embryos on a substrate for their simultaneous confocal scanning, sorting them, or injecting them with various agents. Such systems make it possible, in particular, to create controlled gradients of microenvironmental parameters along a series of developing embryos or even to introduce discontinuity in parameters within the microenvironment of one embryo, so that the head half is under other conditions compared to the tail half (at continuous scanning). These approaches are used both in basic research of the functions of gene ensembles that control early development, including the problems of resistance of early patterns to disturbances, and in test systems for screening chemical agents on developing embryos. The problems of integration of microfluidic devices in systems for automated performance of experiments simultaneously on many developing embryos under conditions of their continuous scanning using modern fluorescence microscopy instruments will be discussed. The methods and approaches developed for Drosophila are also applicable to other model objects, even mammalian embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., et al., The genome sequence of Drosophila melanogaster, Science, 2000, vol. 287, pp. 2185–2195. doi 10.1126/science.287.5461.2185

    Article  PubMed  Google Scholar 

  • Beebe, D.J., Mensing, G.A., and Walker, G.M., Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng., 2002, vol. 4, pp. 261–286. doi 10.1146/annurev.bioeng.4.112601.125916

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, S., Sandler, O., Sberro, H., Shnider, S., Schejter, E., Shilo, B.-Z., and Barkai, N., Pre-steady-state decoding of the Bicoid morphogen gradient, PLoS Biol., 2007, vol. 5, pp. 232–242. doi 10.1371/journal.pbio.0050046

    Article  CAS  Google Scholar 

  • Bernstein, R.W., Zhang, X., Zappe, S., Fish, M., Scott, M.P., and Solgaard, O., Characterization of fluidic microassembly for immobilization and positioning of Drosophila embryos in 2-D arrays, Sensors Actuators A: Physical, 2004a, vol. 114, pp. 191–196. doi 10.1016/j.sna.2003.11.021

    Article  CAS  Google Scholar 

  • Bernstein, R.W., Scott, M., and Solgaard, O., BioMEMS for high-throughput handling and microinjection of embryos, Proc. SPIE—Int. Soc. Opt. Engin., 2004b, vol. 5641, pp. 67–73.

    Google Scholar 

  • Bruus, H., Theoretical Microfluidics. Lecture Notes, 3rd ed., MIC Department of Micro and Nanotechnology Technical University of Denmark, 2006.

    Google Scholar 

  • Busch, W., Moore, B.T., Martsberger, B., Mace, D.L., Twigg, R.W., et al., A microfluidic device and computational platform for high-throughput live imaging of gene expression, Nat. Methods, 2012, vol. 9, pp. 1101–1107. doi 10.1038/nmeth.2185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campos-Ortega, J.A. and Hartenstein, V., The Embryonic Development of Drosophila melanogaster, Berlin: Springer, 1985. doi 10.1007/978-3-662-02454-6

    Book  Google Scholar 

  • Chen, C.C., Zappe, S., Sahin, O., Zhang, X.J., Fish, M., Scott, M., and Solgaard, O., Design and operation of a microfluidic sorter for Drosophila embryos, Sens. Actuators B: Chem., 2004, vol. 102, pp. 59–66. doi 10.1016/j.snb.2003.10.015

    Article  CAS  Google Scholar 

  • Choudhury, D., van Noort, D., Iliescu, C., Zheng, B.X., Poon, K.L., et al., Fish and chips: a microfluidic perfusion platform for monitoring zebrafish development, Lab Chip, 2012, vol. 12, pp. 892–900. doi 10.1039/C1LC20351G

    Article  PubMed  CAS  Google Scholar 

  • Chung, K., Kim, Y., Kanodia, J.S., Gong, E., Shvartsman, S.Y., and Lu, H., A microfluidic array for large-scale ordering and orientation of embryos, Nat. Methods, 2011, vol. 8, pp. 171–176. doi 10.1038/nmeth.1548

    Article  PubMed  CAS  Google Scholar 

  • Crauk, O. and Dostatni, N., Bicoid determines sharp and precise target gene expression in the Drosophila embryo, Curr. Biol., 2005, vol. 15, no. 21, pp. 1888–1898. doi 10.1016/j.cub.2005.09.046

    Article  PubMed  CAS  Google Scholar 

  • Dagani, G.T., Monzo, K., Fakhoury, J.R., Chen, C.C., Sisson, J.C., and Zhang, X.J., Microfluidic self-assembly of live Drosophila embryos for versatile high throughput analysis of embryonic morphogenesis, Biomed. Microdevices, 2007, vol. 9, pp. 681–694. doi 10.1007/s10544-007-9077-z

    Article  PubMed  Google Scholar 

  • Delubac, D., Highley, C.B., Witzberger-Krajcovic, M., Ayoob, J.C., Furbee, E.C., et al., Microfluidic system with integrated microinjector for automated Drosophila embryo injection, Lab Chip, 2012, vol. 12, pp. 4911–4919. doi 10.1039/c2lc40104e

    Article  PubMed  CAS  Google Scholar 

  • El-Ali, J., Sorger, P.K., and Jensen, K.F., Cells on chips, Nature, 2006, pp. 403–411. doi 10.1038/nature05063

    Google Scholar 

  • Esteves, T.C., van Rossem, F., Nordhoff, V., Schlatt, S., Boiani, M., Le Gac, S., A microfluidic system supports single mouse embryo culture leading to full-term development, R. Soc. Chem. Adv., 2013, vol. 3, pp. 26451–26458.

    CAS  Google Scholar 

  • Evstrapov, A.A., Microfluidic chips for biological and medical research, Ross. Khim. Zh., 2011a, vol. 55, no. 2, pp. 99–110.

    CAS  Google Scholar 

  • Evstrapov, A.A., Nanosize structures in microfluidic devices (review), Nauchn. Priborostr., 2011b, vol. 21, no. 3, pp. 3–16.

    Google Scholar 

  • Fakhoury, J.R., Sisson, J.C., and Zhang, X.J., Microsystems for controlled genetic perturbation of live Drosophila embryos: RNA interference, development robustness and drug screening, Microfluid. Nanofluid., 2009, vol. 6, no. 3, pp. 299–313. doi 10.1007/s10404-009-0405-x

    Article  CAS  Google Scholar 

  • Feng, X.J., Du, W., Luo, Q.M., and Liu, B.F., Microfluidic chip: next-generation platform for systems biology, Anal. Chim. Acta, 2009, vol. 650, pp. 83–97. doi 10.1016/j.aca.2009.04.051

    Article  PubMed  CAS  Google Scholar 

  • Furlong, E.E.M., Profitt, D., and Scott, M.P., Automated sorting of live transgenic embryos, Nat. Biotechnol., 2001, vol. 19, pp. 153–156. doi 10.1038/84422

    Article  PubMed  CAS  Google Scholar 

  • Gregor, T., Wieschaus, E.F., McGregor, A.P., Bialek, W., and Tank, D.W., Stability and nuclear dynamics of the Bicoid morphogen gradient, Cell, 2007, vol. 130, pp. 141–152. doi 10.1016/j.cell.2007.05.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He, F., Wen, Y., Deng, J., Lin, X., Lu, L.J., Jiao, R., and Ma, J., Probing intrinsic properties of a robust morphogen gradient in Drosophila, Dev. Cell, 2008, vol. 15, no. 4, pp. 558–567. doi 10.1016/j.devcel.2008.09.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He, F., Wei, C., Wu, H., Cheung, D., Jiao, R., and Ma, J., Fundamental origins and limits for scaling a maternal morphogen gradient, Nat. Commun., 2015, vol. 6, p. 6679. doi 10.1038/ncomms7679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holloway, D.M., Harrison, L.G., Kosman, D., Vanario-Alonso, C.E., and Spirov, A.V., Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products, Dev. Dyn., 2006, vol. 235, pp. 2949–2960. doi 10.1002/dvdy.20940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houchmandzadeh, B., Wieschaus, E., and Leibler, S., Establishment of developmental precision and proportions in the early Drosophila embryo, Nature, 2002, vol. 415, pp. 798–802. doi 10.1038/415798a

    Article  PubMed  CAS  Google Scholar 

  • Kanodia, J.S., Kim, Y., Tomer, R., Khan, Z., Chung, K., Storey, J.D., Lu, H., Keller, P.J., and Shvartsman, S.Y., A computational statistics approach for estimating the spatial range of morphogen gradients, Development, 2011, vol. 138, no. 22, pp. 4867–4874. doi 10.1242/dev.071571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanodia, J., Liang, H.-L., Kim, Y., Lim, B., Zhan, M., Lu, H., Rushlow, C., and Shvartsman, S., Pattern formation by graded and uniform signals in the early Drosophila embryo, Biophys. J., 2012, vol. 102, no. 3, pp. 427–433. doi 10.1016/j.bpj.2011.12.042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kieserman, E.K., Glotzer, M., and Wallingford, J.B., Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis, Curr. Biol., 2008, vol. 18, pp. 116–123. doi 10.1016/j.cub.2007.12.028

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Kim. and Jeon, N.L., Biological applications of microfluidic gradient devices, Integr. Biol., 2010, vol. 2, pp. 584–603. doi 10.1039/c0ib00055h

    Article  CAS  Google Scholar 

  • Krajniak, J. and Lu, H., Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies, Lab Chip, 2010, vol. 10, pp. 1862–1868. doi 10.1039/c001986k

    Article  PubMed  CAS  Google Scholar 

  • Kukhtevich, I.V., Evstrapov, A.A., and Bukatin, A.S., Microfluidic device for cell studies, Nauchn. Priborostr., 2013, vol. 23, no. 4, pp. 66–75.

    Google Scholar 

  • Kukhtevich, I.V., Belousov, K.I., Bukatin, A.S., and Evstrapov, A.A., Topologies of microfluidic devices to study the migration of cells in gradients of chemical substances (review), Nauchn. Priborostr., 2015, vol. 25, no. 1, pp. 3–16. doi 10.18358/np-25-1-i316

    Article  Google Scholar 

  • Levario, T.J., Zhan, M., Lim, B., Shvartsman, S.Y., and Lu, H., Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat. Protoc., 2013, vol. 8, pp. 721–736. doi 10.1038/nprot.2013.034

    Article  PubMed  Google Scholar 

  • Levario, T.J., Lim, B., Shvartsman, S.Y., and Lu, H., Microfluidics for high-throughput quantitative studies of early development, Annu. Rev. Biomed. Eng., 2016a, vol. 18, pp. 285–309. doi 10.1146/annurev-bioeng-100515-013926

    Article  PubMed  CAS  Google Scholar 

  • Levario, T.J., Zhao, C., Rouse, T., Shvartsman, S.Y., and Lu, H., An integrated platform for large-scale data collection and precise perturbation of live Drosophila embryos, Sci. Rep., 2016b, vol. 6, p. 21366. doi 10.1038/srep21366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Little, S.C., Tikhonov, M., and Gregor, T., Precise developmental gene expression arises from globally stochastic transcriptional activity, Cell, 2013, vol. 154, pp. 789–800. doi 10.1016/j.cell.2013.07.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucchetta, E.M., Lee, J.H., Fu, L.A., Patel, N.H., and Ismagilov, R.F., Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics, Nature, 2005, vol. 434, pp. 1134–1138. doi 10.1038/nature03509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucchetta, E.M., Munson, M.S., and Ismagilov, R.F., Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device, Lab Chip, 2006, vol. 6, pp. 185–190. doi 10.1039/b516119c

    Article  PubMed  CAS  Google Scholar 

  • Lucchetta, E.M., Vincent, M.E., and Ismagilov, R.F., A precise Bicoid gradient is nonessential during cycles 11–13 for precise patterning in the Drosophila blastoderm, PLoS One, 2008, vol. 3, p. e3651. doi 10.1371/journal.pone.0003651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucchetta, E.M., Carthew, R.W., and Ismagilov, R.F., The Endo-siRNA pathway is essential for robust development of the Drosophila embryo, PLoS One, 2009, vol. 4, p. e7576. doi 10.1371/journal.pone.0007576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGorty, R., Liu, H., Kamiyama, D., Dong, Z.Q., Guo, S., and Huang, B., Open-top selective plane illumination microscope for conventionally mounted specimens, Opt. Express., 2015, vol. 23, pp. 16142–16153. doi 10.1364/OE.23.016142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGorty, R., Liu, H., Kamiyama, D., Dong, Z.Q., Guo, S., and Huang, B., Open-top selective plane illumination microscope for conventionally mounted specimens, Opt. Express., 2015, vol. 23, pp. 16142–16153. doi 10.1364/OE.23.016142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Meer, A.D., Poot, A.A., Duits, M.H.G., Feijen, J., and Vermes, I., Microfluidic technology in vascular research, J. Biomed. Biotechnol., 2009, p. 823148.

    Google Scholar 

  • Peter, I.S. and Davidson, E.H., Transcriptional network logic: the systems biology of development, in Handbook of Systems Biology. Concepts and Insights, Marian Walhout, A.J., Vidal, M., and Dekker, J., Eds., Academic Press/Elsevier, 2013, pp. 211–228. doi 10.1016/B978-0-12-385944-0.00011-3

    Chapter  Google Scholar 

  • Petkova, M.D., Little, S.C., Liu, F., and Gregor, T., Maternal origins of developmental reproducibility, Curr. Biol., 2014, vol. 24, pp. 1283–1288. doi 10.1016/j.cub.2014.04.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A., and Tyagi, S., Imaging individual mRNA molecules using multiple singly labeled probes, Nat. Methods, 2008, vol. 5, pp. 877–879. doi 10.1038/nmeth.1253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reeves, G.T., Trisnadi, N., Truong, T.V., Nahmad, M., Katz, S., and Stathopoulos, A., Dorsal-ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient, Dev. Cell, 2012, vol. 22, no. 3, pp. 544–557. doi 10.1016/j.devcel.2011.12.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Royer, L.A., Lemon, W.C., Chhetri, R.K., Wan, Y., Coleman, M., Myers, E.W., and Keller, P.J., Adaptive lightsheet microscopy for long-term, high-resolution imaging in living organisms, Nat. Biotechnol., 2016, vol. 34, no. 12, pp. 1267–1278. doi 10.1038/nbt.3708

    Article  PubMed  CAS  Google Scholar 

  • Salieb-Beugelaar, G.B., Simone, G., Arora, A., Philippi, A., and Manz, A., Latest developments in microfluidic cell biology and analysis systems, Anal. Chem., 2010, vol. 82, pp. 4848–4864. doi 10.1021/ac1009707

    Article  PubMed  CAS  Google Scholar 

  • Spirov, A.V. and Holloway, D.M., Making the body plan: precision in the genetic hierarchy of Drosophila embryo segmentation, In Silico Biol., 2003, vol. 3, pp. 89–100.

    PubMed  CAS  Google Scholar 

  • Spradling, A.C., Stern, D., Beaton, A., Rhem, E.J., Laverty, T., et al., The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes, Genetics, 1999, vol. 153, pp. 135–177.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Squires, T. and Quake, S., Microfluidics: fluid physics at the nanoliter scale, Revs. Mod. Phys., 2005, vol. 77, pp. 977–1007. doi 10.1103/RevModPhys.77.977

    Article  CAS  Google Scholar 

  • Taylor, A.M. and Jeon, N.L., Micro-scale and microfluidic devices for neurobiology, Curr. Opin. Neurobiol., 2010, vol. 20, pp. 640–647. doi 10.1016/j.conb.2010.07.011

    Article  PubMed  CAS  Google Scholar 

  • The Development of Drosophila melanogaster. II, Bate, M. and Martinez Arias, A., Eds., Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1993.

  • Wang, J.Y., Ren, L., Li, L., Liu, W.M., Zhou, J., Yu, W.H., Tong, D.W., and Chen, S.L., Microfluidics: a new cosset for neurobiology, Lab Chip, 2009, vol. 9, pp. 644–652. doi 10.1039/B813495B

    Article  PubMed  CAS  Google Scholar 

  • Webster, A., Greenman, J., and Haswell, S.J., Development of microfluidic devices for biomedical and clinical application, J. Chem. Technol. Biotechnol., 2011, vol. 86, pp. 10–17. doi 10.1002/jctb.2482

    Article  CAS  Google Scholar 

  • Weisblat, D.A. and Kuo, D.H., Microinjection of Helobdella (leech) embryos, Cold Spring Harb. Protoc., 2009, vol. 2009, no. 4. pdb.prot5190.

    Google Scholar 

  • Whitesides, G.M., Ostuni, E., Takayama, S., et al., Soft lithography in biology and biochemistry, Annu. Rev. Biomed. Eng., 2001, vol. 3, pp. 335–373. doi 10.1146/annurev.bioeng.3.1.335

    Article  PubMed  CAS  Google Scholar 

  • Witzberger, M.M., Fitzpatrick, J.A.J., Crowley, J.C., and Minden, J.S., End-on imaging: a new perspective on dorsoventral development in Drosophila embryos, Dev. Dyn., 2008, vol. 237, pp. 3252–3259. doi 10.1002/dvdy.21752

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanaveskin, M.L., Mironova, A.A., and Popov, A.M., Microfluidics and its prospects in medicine, Mol. Med.: Kvart. Nauch.-Prakt. Zh., 2012, no. 5, pp. 9–16.

    Google Scholar 

  • Zappe, S., Fish, M., Scott, M.P., and Solgaard, O., Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens, Lab Chip, 2006, vol. 6, pp. 1012–1019. doi 10.1039/b600238b

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.J., Chen, C.-C., Bernstein, R.W., Zappe, S., Scott, M.P., and Solgaard, O., Microoptical characterization and modeling of positioning forces on Drosophila embryos self-assembled in two-dimensional arrays, J. Microelectromech. Syst., 2005, vol. 14, pp. 1187–1197. doi 10.1109/JMEMS.2005.851834

    Article  Google Scholar 

  • Zhang, X.J., Scott, M.P., Quate, C.F., and Solgaard, O., Microoptical characterization of piezoelectric vibratory microinjections in Drosophila embryos for genome-wide RNAi screen, J. Microelectromech. Syst., 2006, vol. 15, pp. 277–286. doi 10.1109/JMEMS.2006.872242

    Article  CAS  Google Scholar 

  • Zhang, Y. and Yu, L.C., Single-cell microinjection technology in cell biology, BioEssays, 2008, vol. 30, no. 6, pp. 606–610. doi 10.1002/bies.20759

    Article  PubMed  Google Scholar 

  • Zimina, T.M., Miniature analytical systems for biomedical applications—labs on chips, Biotekhnosfera, 2009, no. 1, pp. 11–17.

    Google Scholar 

  • Ziolkowska, K., Kwapiszewski, R., and Brzozka, Z., Microfluidic devices as tools for mimicking the in vivo environment, New J. Chem., 2011, vol. 35, pp. 979–990. doi 10.1039/c0nj00709a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Spirov.

Additional information

Original Russian Text © A.V. Spirov, 2018, published in Ontogenez, 2018, Vol. 49, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spirov, A.V. Microfluidics Approaches in Modern Developmental Biology. Russ J Dev Biol 49, 146–158 (2018). https://doi.org/10.1134/S1062360418030086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360418030086

Keywords

Navigation