Skip to main content
Log in

Comparative analysis of expression of TGFβ family factors and their receptors in mouse embryonic stem and teratocarcinoma cells

  • Embryogenesis and Carcinogenesis
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Specific factors that determine the cell fate in early embryogenesis are modulated during interaction of signaling pathways to form a unique regulatory network inside the cell, which is essential for differentiation of various cell populations. We carried out a comparative study of expression of the genes of TGFβ growth factors and their receptors at the initial stages of differentiation of the embryonic stem cells, during formation of spheroids of the embryonic teratocarcinoma cells, and during growth of neoplastic cells in vivo in immunodeficient mice. The patterns of expression of the genes Activin, Nodal, Lefty1, Lefty2, BMP, and TGFβ1 and their receptors ActRI, ActRII, BMPRI, TGFβ1R1, and Tdgf proved to be identical. Expression of α-fetoprotein and transcription factor Gata4 protein, specific for the primary endoderm, was detected in the embryonic teratocarcinoma cells. In Undifferentiated embryonic stem cells, expression of Gata4 was found at the mRNA level, while expression at the level of proteins appeared only in the primary endoderm cells in the embryoid bodies. The results obtained suggest that despite the existence of similar signaling systems in the embryonic stem and teratocarcinoma cells, the presence of different intracellular specific factors forms radically different regulatory pathways, which determine the program of their differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelev, G.I., Alpha-Fetoprotein in Ontogenesis and Its Association with Malignant Tumors, Adv. Cancer Res., 1971, vol. 14, pp. 295–358.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, P.W., From Teratocarcinomas To Embryonic Stem Cells, Philos. Trans. R. Soc. Lond, 2002, vol. 357, pp. 405–417.

    Article  Google Scholar 

  • Besser, D., Expression of Nodal, Lefty-A, and Lefty-B in Undifferentiated Human Embryonic Stem Cells Requires Activation of Smad2/3, J. Biol. Chem., 2004, vol. 279, pp. 45076–45084.

    Article  PubMed  CAS  Google Scholar 

  • Blelloch, R.H., Hochedlinger, K., Yamada, Y., et al., Nuclear Cloning of Embryonal Carcinoma Cells, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 13985–13990.

    PubMed  CAS  Google Scholar 

  • Bonner, A.E., Wang, Y., and You, M., Gene Expression Profiling of Mouse Teratocarcinomas Uncovers Epigenetic Changes Associated with the Transformation of Mouse Embryonic Stem Cells, Neoplasia, 2004, vol. 6, pp. 490–502.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, J.D., Rao, R.R., Warrenfeltz, S., et al., Transcriptional Profiling of Initial Differentiation Events in Human Embryonic Stem Cells, Biochem. Biophys. Res. Commun., 2004, vol. 323, pp. 453–464.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, N.R., Vincent, S.D., Oxburgh, L., et al., Combinatorial Activities of Smad2 and Smad3 Regulate Mesoderm Formation and Patterning in the Mouse Embryo, Development, 2004, vol. 131, pp. 1717–1728.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M.J. and Kaufman, M.H., Establishment in Culture of Pluripotential Cells from Mouse Embryos, Nature, 1981, vol. 292, pp. 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Gordeeva, O.F., Manuilova, E.S., Grivennikov, I.A., et al., Characterization of a Pluripotent Population at the Initial Stages of Differentiatioin of the Embryonic Stem Cells in Culture, Dokl. Ross. Akad. Nauk, 2002, vol. 386, no. 3, pp. 555–558.

    Google Scholar 

  • Gordeeva, O.F., Manuilova, E.S., Payushina, O.V., et al., Differentiation of Pluripotent Embryonic Stem Cells in Peritoneal Cavity of Irradiated Mice, Izv. Akad. Nauk, Ser. Biol., 2003, no. 3, pp. 371–374.

  • Gordeeva, O., Zinovieva, R., Smirnova, Yu., et al., Differentiation of Embryonic Stem Cells after Transplantation Into Peritoneal Cavity of Irradiated Mice and Expression of Specific Germ Cell Genes in Pluripotent Cells, Transpl. Proc., 2005, vol. 37, no. 1, pp. 295–298.

    Article  CAS  Google Scholar 

  • Hair, A., Razin, S.V., and Vassetzky, E.S., Changes in Chromatin Organization during Early Development and Carcinogenesis, Rus. J. Devel. Biol., 2002, vol. 33, pp. 85–89.

    Article  CAS  Google Scholar 

  • James, D., Levine, A.J., Besser, D., and Hemmati-Brivanlou, A., TGFbeta/Activin/Nodal Signaling Is Necessary for the Maintenance of Pluripotency in Human Embryonic Stem Cells, Development, 2005, vol. 132, pp. 1273–1282.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, T., Suzuki, A., Fujita, Y., et al., Conditional Loss of PTEN Leads to Testicular Teratoma and Enhances Embryonic Germ Cell Production, Development, 2003, vol. 130, pp. 1691–1700.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.R., Isolation of Pluripotent Cell Line from Early Mouse Embryo Cultured in Medium Conditioned by Teratocarcinoma Stem Cells, Proc. Natl. Acad. Sci. USA, 1981, vol. 78, pp. 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  • Mitsui, K., Tokuzawa, Y., Itoh, H., et al., The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells, Cell, 2003, vol. 30, pp. 631–642.

    Article  Google Scholar 

  • Morrisey, E.E., Tang, Z., Sigrist, K., et al., GATA6 Regulates HNF4 and Is Required for Differentiation of Visceral Endoderm in the Mouse Embryo, Genes Devel., 1998, vol. 15, pp. 3579–3590.

    Google Scholar 

  • Nagy, A., Rossant, J., Nagy, R., et al., Embryonic Stem Cells Alone Are Able to Support Fetal Development in the Mouse, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, no. 18, pp. 8424–8428.

    Article  PubMed  CAS  Google Scholar 

  • Palmieri, S.L., Peter, W., Hess, H., and Scholer, H.R., Oct-4 Transcription Factor Is Differentially Expressed in the Mouse Embryo during Establishment of the First Two Extraembryonic Cell Lineages Involved in Implantation, Devel. Biol., 1994, vol. 166, pp. 259–267.

    Article  CAS  Google Scholar 

  • Panchision, D.M., Pickel, J.M., Studer, L., et al., Sequential Actions of BMP Receptors Control Neural Precursor Cell Production and Fate, Genes Devel., 2001, vol. 15, no. 16, pp. 2094–2110.

    Article  PubMed  CAS  Google Scholar 

  • Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L., Stem Cells, Cancer, and Cancer Stem Cells, Nature, 2001, vol. 414, pp. 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Rossant, J., Stem Cells from Mammalian Blastocyst, Stem Cells, 2001, vol. 19, pp. 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Rossant, J., Chazaud, C., and Yamanaka, Y., Lineage Allocation and Asymmetries in the Early Mouse Embryo, Philos. Trans. R. Soc. Lond. Biol. Sci, 2003, vol. 358, pp. 1341–1349.

    Article  CAS  Google Scholar 

  • Saijoh, Y., Adachi, H., Mochida, K., et al., Distinct Transcriptional Regulatory Mechanisms Underlie Left-Right Asymmetric Expression of Lefty-1 and Lefty-2, Genes Devel., 1999, vol. 13, pp. 259–269.

    PubMed  CAS  Google Scholar 

  • Sato, N., Meijer, L., Skaltsounis, L., et al., Maintenance of Pluripotency in Human and Mouse Embryonic Stem Cells through Activation of Wnt Signaling by a Pharmacological GSK-3-Specific Inhibitor, Nat. Med., 2004, vol. 10, pp. 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y. and Massague, J., Mechanisms of TGF-Beta Signaling from Cell Membrane to the Nucleus, Cell, 2003, vol. 13, pp. 685–700.

    Article  Google Scholar 

  • Soudais, C., Bielinska, M., Heikinheimo, M., et al., Targeted Mutagenesis of the Transcription Factor GATA-4 Gene in Mouse Embryonic Stem Cells Disrupts Visceral Endoderm Differentiation in vitro, Development, 1995, vol. 121, pp. 3877–3888.

    PubMed  CAS  Google Scholar 

  • Tremblay, K.D., Dunn, N.R., and Robertson, E.J., Mouse Embryos Lacking Smad1 Signals Display Defects in Extra-Embryonic Tissues and Germ Cell Formation, Development, 2001, vol. 128, pp. 3609–3621.

    PubMed  CAS  Google Scholar 

  • Vallier, L., Alexander, M., and Pedersen, R.A., Activin/Nodal and FGF Pathways Cooperate to Maintain Pluripotency of Human Embryonic Stem Cells, J. Cell Sci., 2005, vol. 118, pp. 4495–4509.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.D., Dunn, N.R., Hayashi, S., et al., Cell Fate Decisions within the Mouse Organizer Are Governed by Graded Nodal Signals, Genes Devel., 2003, vol. 17, pp. 1646–1662.

    Article  PubMed  CAS  Google Scholar 

  • Xu, R.H., Peck, R.M., Li, D.S., et al., Basic FGF and Suppression of BMP Signaling Sustain Undifferentiated Proliferation of Human ES Cells, Nat. Methods, 2005, vol. 2, pp. 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Zernicka-Goetz, M., Patterning of the Embryo: The First Spatial Decisions in the Life of a Mouse, Development, 2002, vol. 129, pp. 815–829.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.Yu. Krasnikova, O.F. Gordeeva, 2007, published in Ontogenez, 2007, Vol. 38, No. 2, pp. 126–235.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnikova, N.Y., Gordeeva, O.F. Comparative analysis of expression of TGFβ family factors and their receptors in mouse embryonic stem and teratocarcinoma cells. Russ J Dev Biol 38, 95–103 (2007). https://doi.org/10.1134/S1062360407020063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360407020063

Key words

Navigation