Skip to main content
Log in

Molecular dynamics simulation of the penetration of silicon by hypersonic waves generated in native silicon oxide under irradiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The penetration of hypersonic waves generated in native silicon oxide under the action of an alternating electric field in the case of the illumination or ion irradiation of silicon is simulated by molecular dynamics. It is found that compression leads to an increase in the velocity of the hypersonic wave and that the attenuation of the wave in the compression region of the edge dislocation is slower than in unstrained silicon. These results are consistent with previous analytical estimates made for explanation of the long-range effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Uspenskaya, N. N. Abramova, D. I. Tetel’baum, et al., Physical Foundations of Ion Beam Doping (Gor’kii State Univ., Gor’kii, 1971), Vol. 1, p. 96 [in Russian].

    Google Scholar 

  2. D. I. Tetelbaum, E. V. Kuril’chik, Yu. A. Mendeleva, et al., Bull. Russ. Acad. Sci.: Phys. 72 (9), 1303 (2008).

    Article  Google Scholar 

  3. D. I. Tetelbaum, E. V. Kuril’chik, and Yu. A. Mendeleva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3 (2), 249 (2009).

    Article  Google Scholar 

  4. D. I. Tetelbaum, E. V. Kuril’chik, Yu. A. Mendeleva, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7 (4), 631 (2013).

    Article  Google Scholar 

  5. V. L. Levshunova, G. P. Pokhil, and D. I. Tetelbaum, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (2), 276 (2011).

    Article  Google Scholar 

  6. V. L. Levshunova, G. P. Pokhil, and D. I. Tetelbaum, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (2), 262 (2012).

    Article  Google Scholar 

  7. V. L. Levshunova, G. P. Pokhil, and D. I. Tetelbaum, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7 (2), 351 (2013).

    Article  Google Scholar 

  8. M. Niwano, J. Kageyama, K. Kurita, et al., J. App. Phys. 76, 2157 (1994).

    Article  Google Scholar 

  9. R. Sugino, Y. Nara, H. Horie, et al., J. App. Phys. 76, 5498 (1994).

    Article  Google Scholar 

  10. J. H. Mazur, R. Gronsky, and J. Washburn, in Proc. 3rd Oxford Conference on Microscopy of Semiconducting Materials (Institute of Physics, Oxford, 1983), p. 77.

    Google Scholar 

  11. O. L. Krivanek and J. H. Mazur, Appl. Phys. Lett. 37, 392 (1980).

    Article  Google Scholar 

  12. S. T. Pantelides and M. Long, in The Physics of SiO2 and its Interfaces, Ed. by S. T. Pantelides (Pergamon, New York, 1978), p. 339.

  13. A. Tandia, Microelectron. Eng. 33, 423 (1997).

    Article  Google Scholar 

  14. W. A. Dollase, Acta Crystallogr. 23, 617 (1967).

    Article  Google Scholar 

  15. A. Pasquarello, M. S. Hybertsen, and R. Car, Phys. Rev. Lett. 74, 1024 (1995).

    Article  Google Scholar 

  16. M. P. Shaskol’skaya, Crystallography (Vysshaya Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  17. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  18. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, et al., Contemporary High Performance Computing: From Petascale toward Exascale (CRC Press, Boca Raton, FL, 2013), p. 283.

    Google Scholar 

  19. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Article  Google Scholar 

  20. J. Tersoff, Phys. Rev. B 41, 3248 (1990).

    Article  Google Scholar 

  21. S. Munetoh, T. Motooka, K. Moriguchi, et al., Comput. Mater. Sci. 39, 334 (2007).

    Article  Google Scholar 

  22. A. K. Rappe and W. A. Goddard, J. Phys. Chem. 95, 3358 (1991).

    Article  Google Scholar 

  23. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984).

    Article  Google Scholar 

  24. S. Nose, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  25. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (North Holland, Elsevier Science, Amsterdam, 1986).

    Google Scholar 

  26. J. P. Hirth and I. Lotte, Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Stepanov.

Additional information

Original Russian Text © A.V. Stepanov, D.I. Tetelbaum, 2017, published in Poverkhnost’, 2017, No. 7, pp. 82–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A.V., Tetelbaum, D.I. Molecular dynamics simulation of the penetration of silicon by hypersonic waves generated in native silicon oxide under irradiation. J. Surf. Investig. 11, 756–761 (2017). https://doi.org/10.1134/S1027451017040127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017040127

Keywords

Navigation