Skip to main content
Log in

Mathematical models in genetics

  • Mathematical Models and Methods
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this study, we present some of the basic ideas of population genetics. The founders of population genetics are R.A. Fisher, S. Wright, and J. B.S. Haldane. They, not only developed almost all the basic theory associated with genetics, but they also initiated multiple experiments in support of their theories. One of the first significant insights, which are a result of the Hardy–Weinberg law, is Mendelian inheritance preserves genetic variation on which the natural selection acts. We will limit to simple models formulated in terms of differential equations. Some of those differential equations are nonlinear and thus emphasize issues such as the stability of the fixed points and time scales on which those equations operate. First, we consider the classic case when selection acts on diploid locus at which wу can get arbitrary number of alleles. Then, we consider summaries that include recombination and selection at multiple loci. Also, we discuss the evolution of quantitative traits. In this case, the theory is formulated in respect of directly measurable quantities. Special cases of this theory have been successfully used for many decades in plants and animals breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karlin, S., Some mathematical models of population genetics, Am. Math. Mon., 1972, vol. 79, no. 7 pp. 699–739.

    Article  Google Scholar 

  2. Lange, K., Applied Probability, New York: Springer-Verlag, 2003.

    Google Scholar 

  3. Ignatieva, E.V., Podkolodnaya, O.A., Orlov, Yu.L. et al., Regulatory genomics: combined experimental and computational approaches, Russ. J. Genet., 2015, vol. 51, no. 4 pp. 334–352.

    Article  CAS  Google Scholar 

  4. Markel, A.L., Evolutionary and genetic roots of hypertensive disease, Russ. J. Genet., 2015, vol. 51, no. 6 pp. 545–557.

    Article  CAS  Google Scholar 

  5. Cavalli-Sforza, L.L. and Bodmer, W.F., The Genetics of Human Populations, San Francisco: Freeman, 1971.

    Google Scholar 

  6. Crow, J.F. and Kimura, M., An Introduction to Population Genetics Theory, New York: Harper and Row, 1970.

    Google Scholar 

  7. Elandt-Johnson, R.C., Probability Models and Statistical Methods in Genetics, New York: Wiley, 1971.

    Google Scholar 

  8. Hartl, D.L. and Clark, A.G., Principles of Population Genetics, Sunderland: Sinauer Assoc., 1989.

    Google Scholar 

  9. Jacquard, A., The Genetic Structure of Populations, New York: Springer-Verlag, 1974.

    Book  Google Scholar 

  10. Nagylaki, T., Introduction to Theoretical Population Genetics, Berlin: Springer-Verlag, 1992.

    Book  Google Scholar 

  11. Nagylaki, T., Introduction to Theoretical Population Genetics, Berlin: Springer-Verlag, 1992.

    Book  Google Scholar 

  12. Kanzafarova, R.F., Kazantseva, A.V. and Khusnutdinova, E.K., Genetic and environmental aspects of mathematical disabilities, Russ. J. Genet., 2015, vol. 51, no. 3 pp. 223–230.

    Article  CAS  Google Scholar 

  13. Li, C.C., First Course in Population Genetics, Pacific Grove: Boxwood Press, 1976.

    Google Scholar 

  14. Nesse, R.M., When Bad Genes Happen to Good People, Technology Review, 1995.

    Google Scholar 

  15. Bennet, J.H., On the theory of random mating, Ann. Eugen., 1952, vol. 17, no. 1 pp. 311–317.

    Article  Google Scholar 

  16. Geiringer, H., Further remarks on linkage theory in Mendelian heredity, Ann. Math. Stat., 1945, vol. 16, no. 4 pp. 390–393.

    Article  Google Scholar 

  17. Lange, K., A stochastic model for genetic linkage equilibrium, Theor. Pop. Biol., 1993, vol. 44, no. 2 pp. 129–148.

    Article  CAS  Google Scholar 

  18. Efremov, V.V., Equilibrium between genetic drift and migration at various mutation rates: simulation analysis, Russ. J. Genet., 2005, vol. 41, no. 9 pp. 1055–1058.

    Article  CAS  Google Scholar 

  19. Trifonova, E.A., Spiridonova, M.G. and Stepanov, V.A., Genetic diversity and the structure of linkage disequilibrium in the methylenetetrahydrofolate reductase locus, Russ. J. Genet., 2008, vol. 44, no. 10 pp. 1224–1232.

    Article  CAS  Google Scholar 

  20. Zhdanova, O.L. and Frisman, E.Ya., Modelling of selection acting upon the pleioptropic locus in a population with two age classes, Russ. J. Genet., 2014, vol. 50, no. 8 pp. 879–890.

    Article  CAS  Google Scholar 

  21. Bürger, R., Some Mathematical Models in Evolutionary Genetics, Basel: Springer-Verlag, 2011, pp. 67–89.

    Google Scholar 

  22. Akin, E., The Geometry of Population Genetics, New York: Springer-Verlag, 1979.

    Book  Google Scholar 

  23. Akin, E., Cycling in simple genetic systems, J. Math. Biol., 1982, vol. 13, no. 3 pp. 305–324.

    Article  Google Scholar 

  24. Hastings, A., Stable cycling in discrete-time genetic models, Proc. Natl. Acad. Sci. U.S.A., 1981, vol. 78, no. 11 pp. 7224–7225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hofbauer, J. and Iooss, G., A Hopf bifurcation theorem of difference equations approximating a differential equation, Monatsh. Math., 1984, vol. 98, no. 2 pp. 99–113.

    Article  Google Scholar 

  26. Nagylaki, T., Error bounds for the fundamental and secondary theorems of natural selection, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, no. 6 pp. 2402–2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon Press, 1930.

    Book  Google Scholar 

  28. Shahshahani, S., A New Mathematical Framework for the Study of Linkage and Selection, Providence: Amer. Math. Soc., 1979.

    Google Scholar 

  29. Svirezhev, Yu.M., Optimality principles in population genetics, in Studies in Theoretical Genetics, Novosibirsk: Inst. Tsitol. Genet., 1972, pp. 86–102.

    Google Scholar 

  30. Bürger, R., The Mathematical Theory of Selection, Recombination, and Mutation, Chichester: Wiley, 2000.

    Google Scholar 

  31. Burger, R., A multilocus analysis of intraspecific competition and stabilizing selection on a quantitative trait, J. Math. Biol., 2005, vol. 50, no. 4 pp. 355–396.

    Article  PubMed  Google Scholar 

  32. Schneider, K.A., A multilocus–multiallele analysis of frequency-dependent selection induced by intraspecific competition, J. Math. Biol., 2006, vol. 52, no. 4 pp. 483–523.

    Article  PubMed  Google Scholar 

  33. Schneider, K.A., Long-term evolution of polygenic traits under frequency-dependent intraspecific competition, Theor. Popul. Biol., 2007, vol. 71, no. 3 pp. 342–366.

    Article  PubMed  Google Scholar 

  34. Mackay, T.F.C., Quantitative trait loci in Drosophila, Nat. Rev. Genet., 2001 vol. 2, pp. 11–20.

    Article  CAS  PubMed  Google Scholar 

  35. Barton, N.H. and Keightley, P.D., Understanding quantitative genetic variation, Nat. Rev. Genet., 2002, vol. 3, pp. 11–21.

    Article  CAS  PubMed  Google Scholar 

  36. Lande, R., Quantitative genetic analysis of multivariate evolution applied to brain: body size allometry, Evolution, 1979, vol. 33, no. 1, part 2, pp. 402–416.

    Article  Google Scholar 

  37. Barton, N.H. and Turelli, M., Adaptive landscapes, genetic distance and the evolution of quantitative characters, Genet. Res., 1987, vol. 49, no. 2 pp. 157–173.

    CAS  PubMed  Google Scholar 

  38. Barton, N.H. and Turelli, M., Natural and sexual selection on many loci, Genetics, 1991, vol. 127, no. 1 pp. 229–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Turelli, M. and Barton, N.H., Dynamics of polygenic characters under selection, Theor. Pop. Biol., 1990, vol. 38, no. 1 pp. 1–57.

    Article  Google Scholar 

  40. Bürger, R., Moments, cumulants, and polygenic dynamics, J. Math. Biol., 1991, vol. 30, no. 2 pp. 199–213.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Traykov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traykov, M., Trenchev, I. Mathematical models in genetics. Russ J Genet 52, 985–992 (2016). https://doi.org/10.1134/S1022795416080135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416080135

Keywords

Navigation