Skip to main content
Log in

Genetic mechanisms of adaptive immunity emergence in vertebrates

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The adaptive immune system in vertebrates emerged in a multistep process that can be reconstructed on the basis of the data concerning the structure of immune systems of modern cartilaginous and bony fishes, as well as of cyclostomes. The most probable evolutionary scenario is likely to be as follows: the T cell receptor loci emerged on the basis of NK cell-like receptor genes; the antibody loci evolved on the basis of T cell receptor loci; the MHC locus arose on the basis of the locus responsible for innate immunity of early chordates. The ancestral MHC molecules likely participated in the transplantation immunity before they acquired the ability of antigen peptide presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Janeway, C.A., Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb. Symp. Quant. Biol., 1989, vol. 54, part 1, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Koonin, E.V. and Makarova, K.S., CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes, RNA Biol., 2013, vol. 10, no. 5, pp. 679–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loenen, W.A. and Raleigh, E.A., The other face of restriction: modification-dependent enzymes, Nucleic Acids Res., 2014, vol. 42, no. 1, pp. 56–69. doi 10.1093/nar/gkt747

    Article  CAS  PubMed  Google Scholar 

  4. Orlowski, J. and Bujnicki, J.M., Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses, Nucleic Acids Res., 2008, vol. 36, no. 11, pp. 3552–3569. doi 10.1093/nar/gkn175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishikawa, K., Fukuda, E., and Kobayashi, I., Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems, DNA Res., 2010, vol. 17, no. 6, pp. 325–342. doi 10.1093/dnares/dsq027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barrangou, R., Fremaux, C., Deveau, H., et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, 2007, vol. 315, no. 5819, pp. 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  7. Medzhitov, R. and Janeway, C., Innate immune recognition: mechanisms and pathways, Immunol. Rev., 2000, no. 173, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  8. Schnare, M., Holt, A.C., Takeda, K., et al., Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88, Curr. Biol., 2000, vol. 10, no. 18, pp. 1139–1142.

    Article  CAS  PubMed  Google Scholar 

  9. D’yakov, Yu.T., Towards a general theory of immunity, Zh. Obsh. Biol., 2005, vol. 66, no. 6, pp. 451–458.

    Google Scholar 

  10. Vakhrusheva, O.A. and Nedospasov, S.A., System of innate immunity in plants, Mol. Biol. (Moscow), 2011, vol. 45, no. 1. pp. 16–23.

  11. Smith, L.C., Ghosh, J., Buckley, K.M., et al., Echinoderm immunity, Adv. Exp. Med. Biol., 2010, no. 708, pp. 260–301.

    Article  CAS  PubMed  Google Scholar 

  12. Tauszig, S., Jouanguy, E., Hoffmann, J.A., and Imler, J.L., Toll-related receptors and the control of antimicrobial peptide expression in Drosophila, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 19, pp. 10520–10525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oo, J.Y., Yagi, Y., Hu, X., and Ipa, Y.T., The Drosophila Toll-9 activates a constitutive antimicrobial defense, EMBO Rep., 2002, vol. 3, no. 1, pp. 82–87.

    Article  Google Scholar 

  14. Narbonne-Reveau, K., Charroux, B., and Royet, J., Lack of an antibacterial response defect in Drosophila Toll-9 mutant, PLoS One, 2011, vol. 6, no. 2. e17470. doi 10.1371/journalpone.0017470

  15. Boehm, T., McCurley, N., Sutoh, Y., et al., VLR-based adaptive immunity, Annu. Rev. Immunol., 2012, no. 30, pp. 203–220. doi 10.1146/annurev-immunol-020711-075038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fillatreau, S., Six, A., Magadan, S., et al., The astonishing diversity of Ig classes and B cell repertoires in teleost fish, Front Immunol., 2013, no. 13, pp. 4–28. doi 10.3389/fimmu.2013.00028

    Google Scholar 

  17. Hsu, E., Pulham, N., Rumfelt, L.L., and Flajnik, M.F., The plasticity of immunoglobulin gene systems in evolution, Immunol. Rev., 2006, no. 210, pp. 8–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tonegawa, S., Somatic generation of antibody diversity, Nature, 1983, vol. 302, no. 5909, pp. 575–581.

  19. Taussig, M.J., Recent research in organization and expression of immunoglobulin V region genes, J. Immunogenet., 1987, vol. 14, no. 4–5, pp. 179–188.

    Article  CAS  PubMed  Google Scholar 

  20. Nemazee, D. and Weigert, M., Revising B cell receptors, J. Exp. Med., 2000, vol. 191, no. 11, pp. 1813–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oettinger, M.A., Schatz, D.G., Gorka, C., and Baltimore, D., RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination, Science, 1990, vol. 248, no. 4962, pp. 1517–1523.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, M.S., Lapkouski, M., Yang, W., and Gellert, M., Crystal structure of the V(D)J recombinase RAG1-RAG2, Nature, 2015, vol. 518, no. 7540, pp. 507–511. doi 10.1038/nature14174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramsden, D.A., Baetz, K., and Wu, G.E., Conservation of sequence in recombination signal sequence spacers, Nucleic Acids Res., 1994, vol. 22, no. 10, pp. 1785–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hardy, R.R. and Hayakawa, K., B cell development pathways, Annu. Rev. Immunol., 2001, no. 19, pp. 595–621.

    Article  CAS  PubMed  Google Scholar 

  25. Murphy, K.P., Janeway’s Immunobiology, New York: Garland Science, 2012.

  26. Mombaerts, P., Iacomini, J., Johnson, R.S., et al., RAG-1-deficient mice have no mature B and T lymphocytes, Cell, 1992, vol. 68, no. 5, pp. 869–877.

    Article  CAS  PubMed  Google Scholar 

  27. Shinkai, Y., Rathbun, G., Lam, K.P., et al., RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement, Cell, 1992, vol. 68, no. 5, pp. 855–867.

    Article  CAS  PubMed  Google Scholar 

  28. Bartl, S., Baltimore, D., and Weissman, I.L., Molecular evolution of the vertebrate immune system, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 23, pp. 10769–10770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernstein, R.M., Schluter, S.F., Bernstein, H., and Marchalonis, J.J., Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 18, pp. 9454–9459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fugmann, S.D., Messier, C., Novack, L.A., et al., An ancient evolutionary origin of the Rag1/2 gene locus, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 10, pp. 3728–3733. doi 10.1073/ pnas.0509720103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kapitonov, V.V. and Jurka, J., RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons, PLoS Biol., 2005, vol. 3, no. 6. e181.

    Article  Google Scholar 

  32. Kapitonov, V.V. and Koonin, E.V., Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon, Biol. Direct., 2015, vol. 10, no. 20. doi 10.1186/s13062-015-0055-8

  33. Ohta, Y. and Flajnik, M.F., Coevolution of MHC genes (LMP/TAP/class Ia, NKT-class Ib, NKp30-B7H6): lessons from cold-blooded vertebrates, Immunol. Rev., 2015, vol. 267, no. 1, pp. 6–15. doi 10.1111/imr.12324

    Article  CAS  PubMed  Google Scholar 

  34. Flajnik, M.F., Tlapakova, T., Criscitiello, M.F., et al., Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7’s historical relationship with the MHC, Immunogenetics, 2012, vol. 64, no. 8, pp. 571–590. doi 10.1007/s00251-012-0616-2

    CAS  PubMed  Google Scholar 

  35. Flajnik, M.F., Comparative analyses of immunoglobulin genes: surprises and portents, Nat. Rev. Immunol., 2002, vol. 2, no. 9, pp. 688–698.

    Article  CAS  PubMed  Google Scholar 

  36. Boehm, T., Design principles of adaptive immune systems, Nat. Rev. Immunol., 2011, vol. 11, no. 5, pp. 307–317. doi 10.1038/nri2944

    Article  CAS  PubMed  Google Scholar 

  37. Hsu, E. and Criscitiello, M.F., Diverse immunoglobulin light chain organizations in fish retain potential to revise B cell receptor specificities, J. Immunol., 2006, vol. 177, no. 4, pp. 2452–2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Flajnik, M.F. and Kasahara, M., Origin and evolution of the adaptive immune system: genetic events and selective pressures, Nat. Rev. Genet., 2010, vol. 11, no. 1, pp. 47–59. doi 10.1038/nrg2703

    Article  CAS  PubMed  Google Scholar 

  39. Villarreal, L.P., Viral ancestors of antiviral systems, Viruses, 2011, vol. 3, no. 10, pp. 1933–1958. doi 10.3390/v3101933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. The MHC Sequencing Consortium, Complete sequence and gene map of a human major histocompatibility complex, Nature, 1999, vol. 401, no. 6756, pp. 921–923.

    Article  Google Scholar 

  41. Horton, R., Wilming, L., Rand, V., et al., Gene map of the extended human MHC, Nat. Rev. Genet., 2004, vol. 5, no. 12, pp. 889–899.

    Article  CAS  PubMed  Google Scholar 

  42. Danchin, E., Vitiello, V., Vienne, A., et al., The major histocompatibility complex origin, Immunol. Rev., 2004, no. 198, pp. 216–232.

    Article  CAS  PubMed  Google Scholar 

  43. De Tomaso, A.W. and Weissman, I.L., Initial characterization of a protochordate histocompatibility locus, Immunogenetics, 2003, vol. 55, no. 7, pp. 480–490.

    Article  PubMed  Google Scholar 

  44. Cadavid, L.F., Powell, A.E., Nicotra, M.L., et al., An invertebrate histocompatibility complex, Genetics, 2004, vol. 167, no. 1, pp. 357–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burnet, FM., “Self-recognition” in colonial marine forms and flowering plants in relation to the evolution of immunity, Nature, 1971, vol. 232, no. 5308, pp. 230–235.

    Article  CAS  PubMed  Google Scholar 

  46. Caten, C.E., Vegetative incompatibility and cytoplasmic infection in fungi, J. Gen. Microbiol., 1972, vol. 72, no. 2, pp. 221–229.

    Article  CAS  PubMed  Google Scholar 

  47. Ebert, P.R., Anderson, M.A., Bernatzky, R., et al., Genetic polymorphism of self-incompatibility in flowering plants, Cell, 1989, vol. 56, no. 2, pp. 255–262.

    Article  CAS  PubMed  Google Scholar 

  48. Strassmann, J.E. and Queller, D.C., Evolution of cooperation and control of cheating in a social microbe, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, suppl. 2, pp. 10855–10862. doi 10.1073/pnas.1102451108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tanaka, A., Fukunaga, A., and Oishi, K., Studies on the sex-specific lethals of Drosophila melanogaster: 2. Further studies on a male-specific lethal gene, maleless, Genetics, 1976, vol. 84, no. 2, pp. 257–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kurata, S., Fly immunity: recognition of pathogens and induction of immune responses, Adv. Exp. Med. Biol., 2010, no. 708, pp. 205–217.

    Article  CAS  PubMed  Google Scholar 

  51. Lacroix, J.V. and Riser, W.H., Transmissible lymphosarcoma of the dog, North Am. Vet., 1947, vol. 28, no. 7, p. 451.

    CAS  PubMed  Google Scholar 

  52. Ostrander, E.A., Davis, B.W., and Ostrander, G.K., Transmissible tumors: breaking the cancer paradigm, Trends Genet., 2016, vol. 32, no. 1, pp. 1–15. doi 10.1016/jtig.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  53. Pyecroft, S.B., Pearese, A.M., Loh, R., et al., Towards a case definition for devil facial tumour disease: what is it?, EcoHealth, 2007. doi 10.1007/s10393-007-0126-0

  54. Pye, R.J., Pemberton, D., Tovar, C., et al., A second transmissible cancer in Tasmanian devils, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 2, pp. 374–379. doi 10.1073/pnas.1519691113

    Article  CAS  PubMed  Google Scholar 

  55. Metzger, M.J., Reinisch, C., Sherry, J., and Goff, S.P., Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams, Cell, 2015, vol. 161, no. 2, pp. 255–263. doi 10.1016/jcell.2015.02.042

  56. Graffi, A., Bender, E., Schramm, T., et al., Induction of transmissible lymphomas in Syrian hamsters by application of DNA from viral hamster papovavirusinduced tumors and by cell-free filtrates from human tumors, Proc. Natl. Acad. Sci. U.S.A., 1969, vol. 64, no. 4, pp. 1172–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Siddle, H.V. and Kaufman, J., A tale of two tumours: comparison of the immune escape strategies of contagious cancers, Mol. Immunol., 2013, vol. 55, no. 2, pp. 190–193. doi 10.1016/jmolimm.2012.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Murgia, C., Pritchard, J.K., Kim, S.Y., et al., Clonal origin and evolution of a transmissible cancer, Cell, 2006, vol. 126, no. 3, pp. 477–487. doi 10.1016/jcell.2006.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hsu, E., The invention of lymphocytes, Curr. Opin. Immunol., 2011, vol. 23, no. 2, pp. 156–162. doi 10.1016/jcoi.2010.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cooper, M.D. and Alder, M.N., The evolution of adaptive immune systems, Cell, 2006, vol. 124, no. 4, pp. 815–822.

    Article  CAS  PubMed  Google Scholar 

  61. Roux, K.H., Sina, C., Ehrhardt, G.R., et al., Structure and specificity of lamprey monoclonal antibodies, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 6, pp. 2040–2045. doi 10.1073/pnas.0711619105

    Article  PubMed  PubMed Central  Google Scholar 

  62. Arakawa, H. and Buerstedde, J.M., Immunoglobulin gene conversion: insights from bursal B cells and the DT40 cell line, Dev. Dyn., 2004, vol. 229, no. 3, pp. 458–464.

    Article  CAS  PubMed  Google Scholar 

  63. Swann, J.B., Weyn, A., Nagakubo, D., et al., Conversion of the thymus into a bipotent lymphoid organ by replacement of FOXN1 with its paralog, FOXN4, Cell Rep., 2014, vol. 8, no. 4, pp. 1184–1197. doi 10.1016/ jcelrep.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  64. Vigliano, F.A., Losada, A.P., Castello, M., et al., Morphological and immunohistochemical characterisation of the thymus in juvenile turbot (Psetta maxima L.), Cell. Tissue Res., 2011, vol. 346, no. 3, pp. 407–416. doi 10.1007/s00441-011-1282-7

    Article  CAS  PubMed  Google Scholar 

  65. Miyadai, T., Ootani, M., Tahara, D., et al., Monoclonal antibodies recognising serum immunoglobulins and surface immunoglobulin-positive cells of puffer fish, torafugu (Takifugu rubripes), Fish Shellfish Immunol., 2004, vol. 17, no. 3, pp. 211–222.

    Article  CAS  PubMed  Google Scholar 

  66. Kasamatsu, J., Sutoh, Y., Fugo, K., et al., Identification of a third variable lymphocyte receptor in the lamprey, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 32, pp. 14304–14308. doi 10.1073/pnas.1001910107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sansom, S.N., Shikama-Dorn, N., Zhanybekova, S., et al., Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia, Genome Res., 2014, vol. 24, no. 12, pp. 1918–1931. doi 10.1101/gr.171645.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pinto, S., Michel, C., Schmidt-Glenewinkel, H., et al., Overlapping gene coexpression patterns in human medullary thymic epithelial cells generate self-antigen diversity, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 37. e3497–E3505. doi 10.1073/pnas.1308311110

    Article  Google Scholar 

  69. Rattay, K., Meyer, H.V., Herrmann, C., et al., Evolutionary conserved gene co-expression drives generation of self-antigen diversity in medullary thymic epithelial cells, J. Autoimmun., 2015. doi 10.1016/jjaut.2015.10.001

    Google Scholar 

  70. Dzik, J.M., The ancestry and cumulative evolution of immune reactions, Acta Biochim. Pol., 2010, vol. 57, no. 4, pp. 443–466.

    CAS  PubMed  Google Scholar 

  71. Haruta, C., Suzuki, T., and Kasahara, M., Variable domains in hagfish: NICIR is a polymorphic multigene family expressed preferentially in leukocytes and is related to lamprey TCR-like, Immunogenetics, 2006, vol. 58, no. 2–3, pp. 216–225.

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki, T., Shin-I, T., Fujiyama, A., et al., Hagfish leukocytes express a paired receptor family with a variable domain resembling those of antigen receptors, J. Immunol., 2005, vol. 174, no. 5, pp. 2885–2891.

    Article  CAS  PubMed  Google Scholar 

  73. Satoh, N., Rokhsar, D., and Nishikawa, T., Chordate evolution and the three-phylum system, Proc. Biol. Sci., 2014, vol. 281, no. 1794, pp. 1–10. doi 10.1098/rspb.2014.172910.1098/rspb.2014.1729

    Article  Google Scholar 

  74. Romer, A.S., Major steps in vertebrate evolution, Science, 1967, vol. 158, no. 3809, pp. 1629–1637.

    Article  CAS  PubMed  Google Scholar 

  75. Khalturin, K., Panzer, Z., Cooper, M.D., and Bosch, T.C., Recognition strategies in the innate immune system of ancestral chordates, Mol. Immunol., 2004, vol. 41, no. 11, pp. 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  76. Finstad, J. and Good, R.A., The evolution of the immune response: 3. Immunologic responses in the lamprey, J. Exp. Med., 1964, vol. 120, pp. 1151–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spits, H. and Di Santo, J.P., The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling, Nat. Immunol., 2011, vol. 12, no. 1, pp. 21–27. doi 10.1038/ni.1962

    Article  CAS  PubMed  Google Scholar 

  78. Nederbragt, A.J., Jentoft, S., Grimholt, U., et al., The genome sequence of Atlantic cod reveals a unique immune system, Nature, 2011, vol. 477, no. 7363, pp. 207–210. doi 10.1038/nature10342

    Article  PubMed  PubMed Central  Google Scholar 

  79. Venkatesh, B., Lee, A.P., Ravi, V., et al., Elephant shark genome provides unique insights into gnathostome evolution, Nature, 2014, vol. 505, no. 7482, pp. 174–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Malmstrom, M., Jentoft, S., Gregers, T.F., and Jakobsen, K.S., Unraveling the evolution of the Atlantic cod’s (Gadus morhua L.) alternative immune strategy, PLoS One, 2013, vol. 8, no. 9. e74004.

  81. Fänge, R. and Mattisson, A., The lymphomyeloid (hemopoietic) system of the Atlantic nurse shark, Ginglymostoma cirratum, Biol. Bull., 1981, vol. 160, no. 2, pp. 240–249.

    Article  Google Scholar 

  82. Fänge, R. and Mattisson, A., The cellular structure of the Leydig organ in the shark, Etmopterus spinax (L.), Biol. Bull., 1982, vol. 162, no. 2, pp. 182–194.

    Google Scholar 

  83. Kudo, A. and Melchers, F., A second gene, VpreB in the lambda 5 locus of the mouse, which appears to be selectively expressed in pre-B lymphocytes, EMBO J., 1987, vol. 6, no. 8, pp. 2267–2272.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Marchalonis, J.J., Schluter, S.F., Bernstein, R.M., and Hohman, V.S., Antibodies of sharks: revolution and evolution, Immunol. Rev., 1998, no. 166, pp. 103–122.

    Article  CAS  PubMed  Google Scholar 

  85. Diaz, M., Stanfield, R.L., Greenberg, A.S., and Flajnik, M.F., Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development, Immunogenetics, 2002, vol. 54, no. 7, pp. 501–512.

    Article  CAS  PubMed  Google Scholar 

  86. Criscitiello, M.F., Saltis, M., and Flajnik, M.F., An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 13, pp. 5036–5041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Muyldermans S., Atarhouch T., Saldanha J. et al. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains, Protein Eng., 1994, vol. 7, no. 9, pp. 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  88. Parra, Z.E., Baker, M.L., Schwarz, R.S., et al., A unique T cell receptor discovered in marsupials, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 23, pp. 9776–9781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, X., Parra, Z.E., and Miller, R.D., Platypus TCRµ provides insight into the origins and evolution of a uniquely mammalian TCR locus, J. Immunol., 2011, vol. 187, no. 10, pp. 5246–5254. doi 10.4049/ jimmunol. 1101113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nguyen, V.K., Su, C., Muyldermans, S., van der Loo, W., Heavy-chain antibodies in Camelidae; a case of evolutionary innovation, Immunogenetics, 2002, vol. 54, no. 1, pp. 39–47.

    Article  CAS  PubMed  Google Scholar 

  91. Flajnik, M.F., Deschacht, N., and Muyldermans, S., A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels?, PLoS Biol., 2011, vol. 9, no. 8. e1001120. doi 10.1371/journal. pbio.1001120

    Article  Google Scholar 

  92. Malecek, K., Lee, V., Feng, W., et al., Immunoglobulin heavy chain exclusion in the shark, PLoS Biol., 2008, vol. 6, no. 6. e157. doi 10.1371/journalpbio.0060157

    Article  Google Scholar 

  93. Smith, SL., Shark complement: an assessment, Immunol. Rev., 1998, no. 166, pp. 67–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Shilov.

Additional information

Original Russian Text © E.S. Shilov, D.V. Kuprash, 2016, published in Genetika, 2016, Vol. 52, No. 7, pp. 761–773.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilov, E.S., Kuprash, D.V. Genetic mechanisms of adaptive immunity emergence in vertebrates. Russ J Genet 52, 664–675 (2016). https://doi.org/10.1134/S1022795416070097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416070097

Keywords

Navigation