Skip to main content
Log in

Antirestriction activity of the mercury resistance nonconjugative transposon Tn5053 is controlled by the protease ClpXP

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

When transformed into Escherichia coli K12 strains, the mercury resistance transposon Tn5053 exhibits high antirestriction activity against the EcoKI type I restriction and modification system. The products of the genes merR and ardD contribute to the antirestriction activity of Tn5053. The merR gene encodes the MerR protein, the transcription regulator of the mer operon genes. The ardD gene is responsible for ArdD protein synthesis and is located within the tni operon. In the following study, it was demonstrated that the antirestriction activity of the transposon Tn5053 is absent in E. coli K12 strains with the mutant genes clpX, clpP, and recA. The antirestriction effect of Tn5053 is not enhanced by 2-aminopurine. The Tn5053 antirestriction activity is not altered in E. coli K12 with the mutant dam gene; however, it is decreased in the E. coli K12 mutD. It is assumed that the activities of the MerR and ArdD proteins lead to the formation of a significant amount of unmodified DNA in the bacterial cell, causing the SOS-dependent reduction of the EcoKI (R2M2S) enzyme activity associated with ClpXP-induced proteolysis of the R-subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zavilgelsky, G.B., Antirestriction, Mol. Biol. (Moscow), 2000, vol. 34, pp. 854–862.

    Google Scholar 

  2. Tock, M.R. and Dryden, D.T.F., The biology of restriction and antirestriction, Curr. Opin. Microbiol., 2005, vol. 8, pp. 466–472.

    Article  PubMed  CAS  Google Scholar 

  3. Delver, E.P., Kotova, V.Yu., Zavilgelsky, G.B., and Belogurov, A.A., Nucleotide sequence of the gene (ard) encoding the antirestriction protein of plasmid ColIb-P9, J. Bacteriol., 1991, vol. 173, pp. 5887–5892.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Chilley, P.M. and Wilkins, B.M., Distribution of the ardA family of antirestriction genes on conjugative plasmids, Microbiology, 1995, vol. 141, pp. 2157–2164.

    Article  PubMed  CAS  Google Scholar 

  5. McMahon, S.A., Roberts, G.A., Jhonson, K.A., et al., Extensive DNA mimicry by the ArdA antirestriction protein and its role in the spread antibiotic resistance, Nucleic Acids Res., 2009, vol. 37, pp. 4887–4897.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Belogurov, A.A., Delver, E.P., and Rodzevich, O.V., Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences, J. Bacteriol., 1993, vol. 175, pp. 4843–4850.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Serfiotis-Mitsa, D., Herbert, A.P., Roberts, G.A., et al., The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against type I DNA restriction systems in vivo but not in vitro, Nucleic Acids Res., 2010, vol. 38, pp. 1723–1737.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Balabanov, V.P., Kotova, V.Yu., Kholodii, G.Ya., et al., A novel gene, ardD, determines antirestriction activity of the non-conjugative transposon Tn5053 and is located antisense within the tniA gene, FEMS Microbiol. Lett., 2012, vol. 337, pp. 55–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Rastorguev, S.M., Letuchaya, T.A., Kholodii, G.Ya., et al., Antirestriction activity of metalloregulatory proteins ArsR and MerR, Mol. Biol. (Moscow), 1999, vol. 33, no. 2, pp. 170–172.

    CAS  Google Scholar 

  10. Kholodii, G.Y., Yurieva, O.V., Lomovskaya, O.L., et al., Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron, Mol. Microbiol., 1995, vol. 17, pp. 1189–1120.

    Article  PubMed  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  12. Kotova, V.Yu., Belogurov, A.A., and Zavilgelsky, G.B., Alleviation of the type I restriction in the presence of plasmid from IncI group: general characteristic and molecular cloning of the gene ard, Mol. Biol. (Moscow), 1988, vol. 22, pp. 270–276.

    CAS  Google Scholar 

  13. Zavilgelsky, G.B., Kotova, V.Yu., and Rastorguev, S.M., Antimodification activity of the ArdA and Ocr proteins, Russ. J. Genet., 2011, vol. 47, no. 2, pp. 139–146.

    Article  CAS  Google Scholar 

  14. Makovets, S., Titheradge, A.J.B., and Murray, N.E., ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems, Mol. Microbiol., 1998, vol. 28, pp. 25–35.

    Article  PubMed  CAS  Google Scholar 

  15. Makovets, S., Doronina, V.A., and Murray, N.E., Regulation of endonuclease activity by proteolysis prevents breakage of unmodified bacterial chromosomes by type I restriction enzymes, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 9757–9662.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Doronina, V.A. and Murray, N.E., The proteolytic control of restriction activity in Escherichia coli K-12, Mol. Microbiol., 2001, vol. 39, pp. 416–428.

    Article  PubMed  CAS  Google Scholar 

  17. Belogurov, A.A., Efimova, E.P., Del’ver, E.P., and Zavilgelsky, G.B., Alleviation of the type I restriction in Escherichia coli: effect of the dam mutation, Mol. Genet., Mikrobiol. Virusol., 1987, no. 9, pp. 10–16.

    Google Scholar 

  18. Belogurov, A.A., Efimova, E.P., Del’ver, E.P., and Zavilgelsky, G.B., Alleviation of the type I restriction in Escherichia coli: the effect of 2-aminopurine and 5-bromouracil, Mol. Genet., Mikrobiol. Virusol., 1987, no. 11, pp. 34–40.

    Google Scholar 

  19. Efimova, E.P., Delver, E.P., and Belogurov, A.A., Alleviation of type I restriction in adenine methylase (dam) mutants of Escherichia coli, Mol. Gen. Genet., 1988, vol. 214, pp. 313–316.

    Article  PubMed  CAS  Google Scholar 

  20. Efimova, E.P., Delver, E.P., and Belogurov, A.A., 2-Aminopurine and 5-bromouracil induce alleviation of type I restriction in Escherichia coli: mismatches function as inducing signals?, Mol. Gen. Genet., 1988, vol. 214, pp. 317–320.

    Article  PubMed  CAS  Google Scholar 

  21. Thoms, B. and Wackernagel, W., UV-induced alleviation of γ restriction in Escherichia coli K12: kinetics of induction and specificity of this SOS function, Mol. Gen. Genet., 1982, vol. 186, pp. 111–117.

    Article  PubMed  CAS  Google Scholar 

  22. Thoms, B. and Wackernagel, W., Genetic control of damage-inducible restriction alleviation in Escherichia coli K12: an SOS function not repressed by lexA, Mol. Gen. Genet., 1984, vol. 197, pp. 297–303.

    Article  PubMed  CAS  Google Scholar 

  23. Kelleher, J.E. and Ralleigh, E.A., Response to UV damage by four Escherichia coli K12 restriction systems, J. Bacteriol., 1994, vol. 176, pp. 5888–5896.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Zavilgelsky, G.B., Manukhov, I.V., and Rastorguev, S.M., Alleviation of type I restriction in Escherichia coli: ard gene action in UV-irradiated cells, Russ. J. Genet., 1996, vol. 32, no. 7, pp. 885–887.

    Google Scholar 

  25. Blakely, G.W. and Murray, N.E., Control of the endonuclease activity of type I restriction-modification systems is required to maintain chromosome integrity following homologous recombination, Mol. Microbiol., 2006, vol. 60, pp. 883–893.

    Article  PubMed  CAS  Google Scholar 

  26. Chan, A. and Nagel, R., Involvement of recA and recF in the induced precise excision of Tn10 in Escherichia coli, Mutat. Res., 1997, vol. 381, pp. 111–115.

    Article  PubMed  CAS  Google Scholar 

  27. Eichenbaum, Z. and Livneh, Z., UV-light induces IS10 transposition in Escherichia coli, Genetics, 1998, vol. 149, pp. 1173–1181.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Aleshkin, G.I., Kadzhaev, K.V., and Markov, A.P., High and low UV-dose responses in SOS-induction of the precise excision of transposons Tn1, Tn5, and Tn10 in Escherichia coli, Mutat. Res., 1998, vol. 401, pp. 179–191.

    Article  PubMed  CAS  Google Scholar 

  29. Shi, Q., Parks, A.R., Potter, B.D., et al., DNA damage differentially activates regional chromosomal loci for T7 transposition in Escherichia coli, Genetics, 2008, vol. 179, pp. 1237–1250.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Zavilgelsky.

Additional information

Original Russian Text © G.B. Zavilgelsky, V.Yu. Kotova, O.E. Melkina, K.S. Pustovoit, 2014, published in Genetika, 2014, Vol. 50, No. 9, pp. 1033–1039.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavilgelsky, G.B., Kotova, V.Y., Melkina, O.E. et al. Antirestriction activity of the mercury resistance nonconjugative transposon Tn5053 is controlled by the protease ClpXP. Russ J Genet 50, 910–915 (2014). https://doi.org/10.1134/S1022795414090166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414090166

Keywords

Navigation