Skip to main content
Log in

Genetic base of Arabidopsis thaliana (L.) Heynh.: Fitness of plants for extreme conditions in northern margins of species range

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Flowering time and vernalization requirement were studied in eight natural Karelian populations (KPs) of Arabidopsis thaliana. These KPs consisted of late-flowering plants with elevated expression of flowering repressor FLC and a reduced expression level of flowering activator SOC1 compared to the early-flowering ecotypes Dijon-M and Cvi-0. Despite variations in flowering time and the vernalization requirement among the KPs, two-week-old seedlings showed no changes in either the nucleotide sequence of the FRI gene or the relative expression levels of FRI and its target gene FLC that would be responsible for this variation. An analysis of abscisic acid (ABA) biosynthesis and catabolism genes (NCED3 and CYP707A2) did not show significant differences between late-flowering KPs and the early-flowering ecotypes Dijon-M and Cvi-0. Cold treatment (4°C for 24 h) induced the expression of not only NCED3, but also RD29B, a gene involved in the ABA-dependent cold-response pathway. The relative levels of cold activation of these genes were nearly equal in all genotypes under study. Thus, the ABA-dependent cold response pathway does not depend on FLC expression. The lack of significant differences between northern populations, as well as the ecotypes Dijon- M (Europe) and Cvi-0 (Cape Verde Islands), indicates that this pathway is not crucial for fitness to the northern environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedorenko, O.M., Savushkin, A.I., Olimpienko, G.S., Genetic diversity in natural populations of Arabidopsis thaliana (L.) Heynh. from Karelia, Russ. J. Genet., 2001, vol. 37, no. 2, pp. 162–167.

    Article  CAS  Google Scholar 

  2. Fedorenko, O.M. and Gritskikh, M.V., Diversity of Arabidopsis thaliana (L.) Heynh. natural populations at the northern limits of the species range: RAPD analysis, Russ. J. Genet., 2008, vol. 44, no. 4, pp. 425–428.

    Article  CAS  Google Scholar 

  3. Gritskikh, M.V., Nikolaevskaya, T.S., Topchieva, L.V., and Fedorenko, O.M., Genetic and morphophysiological features of natural northern populations of Arabidopsis thaliana (L.) Heynh., in Trudy Karelskogo nauchnogo tsentra Rossiiskoi Akademii Nauk (Transactions of Karelian Research Centre of Russian Academy of Science), no. 3: Eksperimentalnaya biologiya (Experimental Biology), Petrozavodsk: Karel. Nauch. Tsentr Ross. Akad. Nauk, 2009, pp. 38–45.

    Google Scholar 

  4. Stinchcombe, J.R., Weinig, C., Ungerer, M., et al., A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 4712–4717.

    Article  PubMed  CAS  Google Scholar 

  5. Lewandowska-Sabat, A.M., Fjellheim, S., and Rognli, O.A., The continental-oceanic climatic gradient impose clinal variation in vernalization response in Arabidopsis thaliana, Environ. Exp. Bot., 2012, vol. 78, pp. 109–116.

    Article  Google Scholar 

  6. Johanson, U., West, J., Lister, C., et al., Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time, Science, 2000, vol. 290, pp. 344–347.

    Article  PubMed  CAS  Google Scholar 

  7. Choi, K., Kim, J., Hwang, H-J., et al., The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors, Plant Cell, 2011, vol. 23, pp. 289–303.

    Article  PubMed  CAS  Google Scholar 

  8. Helliwell, C.A., Wood, C.C., Robertson, M., et al., The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex, Plant J., 2006, vol. 46, pp. 183–192.

    Article  PubMed  CAS  Google Scholar 

  9. Heo, J.B. and Sung, S., Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA, Science, 2011, vol. 331, no. 6013, pp. 76–79.

    Article  PubMed  CAS  Google Scholar 

  10. Choi, J., Hyun, Y., Kang, M.-J., et al., Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development, Plant J., 2009, vol. 57, pp. 918–931.

    Article  PubMed  CAS  Google Scholar 

  11. Shindo, Ch., Aranzana, M.J., Lister, C., et al., Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis, Plant Physiol., 2005, vol. 138, pp. 1163–1173.

    Article  PubMed  CAS  Google Scholar 

  12. Le Corre, V., Roux, F., and Reboud, X., DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: Extensive nonsynonymous variation is consistent with local selection for flowering time, Mol. Biol. Evol., 2002, vol. 19, pp. 1261–1271.

    Article  PubMed  Google Scholar 

  13. Gazzani, S., Gendall, A.R., Lister, C., and Dean, C., Analysis of the molecular basis of flowering time variation in Arabidopsis accessions, Plant Physiol., 2003, vol. 132, pp. 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  14. Chiang, G.C., Barua, D., Kramer, E.M., et al., Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 11661–11666.

    Article  PubMed  CAS  Google Scholar 

  15. Saibo, N.J., Lourenco, T., and Oliveira, M.M., Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses, Ann. Bot., 2009, vol. 103, pp. 609–623.

    Article  PubMed  CAS  Google Scholar 

  16. Yamaguchi-Shinozaki, K. and Shinozaki, K., Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants, Mol. Gen. Genet., 1993, vol. 236, no. 2, pp. 331–340.

    Article  PubMed  CAS  Google Scholar 

  17. Kurbidaeva, A.S. and Novokreshchenova, M.G., Genetic control of plant resistance to cold, Russ. J. Genet., 2011, vol. 47, no. 6, pp. 746–761.

    Article  Google Scholar 

  18. Jia, H., Zhang, S., Ruan, M., et al., Analysis and application of RD29 genes in abiotic stress response, Acta Physiol. Plant., 2012, vol. 34, pp. 1239–1250.

    Article  CAS  Google Scholar 

  19. Michaels, S.D. and Amasino, R.M., FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering, Plant Cell, 1999, vol. 11, pp. 949–956.

    PubMed  CAS  Google Scholar 

  20. Lempe, J., Balasubramanian, S., and Sureshkumar, S., Diversity of flowering responses in wild Arabidopsis thaliana strains, PLoS Genet., 2005, vol. 1, pp. 109–118.

    Article  PubMed  CAS  Google Scholar 

  21. Möller, E.M., Bahnweg, G., Sandermann, H., and Geiger, H.H., A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues, Nucleic Acids Res., 1992, vol. 20, pp. 6115–6116.

    Article  PubMed  Google Scholar 

  22. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method, Methods, 2001, vol. 25, pp. 402–408.

    Article  PubMed  CAS  Google Scholar 

  23. Czechowski, T., Stitt, M., Altmann, T., et al., Genomewide identification and testing of superior reference genes for transcript normalization in Arabidopsis, Plant Physiol., 2005, vol. 139, pp. 5–17.

    Article  PubMed  CAS  Google Scholar 

  24. Kranz, A.R. and Kircheim, B., Genetic resources in Arabidopsis, AIS, 1987, vol. 24, p. 249.

    Google Scholar 

  25. Fedorenko, O.M., Gritskikh, M.V., and Nikolaevskaya, T.S., Polymorphism based on the onset of flowering in Arabidopsis thaliana (L.) Heynh. at the northern limit of the distribution range, in Trudy Karelskogo nauchnogo tsentra Rossiiskoi Akademii Nauk (Transactions of Karelian Research Centre of Russian Academy of Science), no. 2: Eksperimentalnaya biologiya (Experimental Biology), Petrozavodsk: Karel. Nauch. Tsentr Ross. Akad. Nauk, 2012, pp. 139–146.

    Google Scholar 

  26. Kupriyanova, E.V., Ezhova, T.A., and Shestakov, S.V., Dimorphic DNA variation in the anionic peroxidase gene AtPrx53 of Arabidopsis thaliana, Genes Genet. Syst., 2007, vol. 82, no. 5, pp. 377–385.

    Article  PubMed  CAS  Google Scholar 

  27. Werner, J.D., Borevitz, J.O., Uhlenhaut, N.H., et al., FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions, Genetics, 2005, vol. 170, no. 3, pp. 1197–1207.

    Article  PubMed  CAS  Google Scholar 

  28. Méndez-Vigo, B., Picó, F.X., Ramiro, M., et al., Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis, Plant Physiol., 2011, vol. 157, no. 4, pp. 1942–1955.

    Article  PubMed  Google Scholar 

  29. Sheldon, C.C., Finnegan, E.J., and Rouse, D.T., The control of flowering by vernalization, Curr. Opin. Plant Biol., vol. 3, pp. 418–422.

  30. Seo, E., Lee, H., Jeon, J., et al., Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC, Plant Cell, 2009, vol. 21, pp. 3185–3197.

    Article  PubMed  CAS  Google Scholar 

  31. Moon, J., Suh, S.S., Lee, H., et al., The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis, Plant J., 2003, vol. 35, pp. 613–623.

    Article  PubMed  CAS  Google Scholar 

  32. Sheldon, C.C., Finnegan, E.J., Dennis, E.S., and Peacock, W.J., Quantitative effects of vernalization on FLC and SOC1 expression, Plant J., 2006, vol. 45, pp. 871–883.

    Article  PubMed  CAS  Google Scholar 

  33. Michaels, S.D., Ditta, G., Gustafson-Brown, C., et al., AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization, Plant J., 2003, vol. 33, pp. 867–874.

    Article  PubMed  CAS  Google Scholar 

  34. Iuchi, S., Kobayashi, M., Taji, T., et al., Regulation of drought tolerance by gene manipulation of 9-cisepoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis, Plant J., 2001, vol. 27, no. 4, pp. 325–333.

    Article  PubMed  CAS  Google Scholar 

  35. Lin, Y.H., Hwang, S.Y., Hsu, P.Y., et al., Molecular population genetics and gene expression analysis of duplicated CBF genes of Arabidopsis thaliana, BMC Plant Biol., 2008, vol. 8, p. 111.

    Article  PubMed  Google Scholar 

  36. McKhann, H., Gery, C., Brard, A., et al., Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana, BMC Plant Biol., 2008, vol. 8, p. 105.

    Article  PubMed  Google Scholar 

  37. Fedorenko, O.M., Gritskikh, M.V., Topchieva, L.V., and Lebedeva, O.N., Comparative analysis of genetic structure in natural populations of two Arabidopsis species with different degree of panmixia, Russ. J. Genet., 2011a, vol. 47, no. 4, pp. 446–452.

    Article  CAS  Google Scholar 

  38. Fedorenko, O.M., Gritskikh, M.V., Lebedeva, O.N., and Titov, A.F., Genetic diversity of the natural Arabidopsis thaliana (L.) Heynh. populations at the northern limit of species distribution range, Uch. Zap. Petrozavodsk. Gos. Univ. im. O.V. Kusinena, 2011b, no. 2, pp. 17–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Fedorenko.

Additional information

Original Russian Text © A.S. Kurbidaeva, M.V. Zaretskaya, A.D. Soltabaeva, M.G. Novokreshchenova, E.V. Kupriyanova, O.M. Fedorenko, T.A. Ezhova, 2013, published in Genetika, 2013, Vol. 49, No. 8, pp. 943–952.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurbidaeva, A.S., Zaretskaya, M.V., Soltabaeva, A.D. et al. Genetic base of Arabidopsis thaliana (L.) Heynh.: Fitness of plants for extreme conditions in northern margins of species range. Russ J Genet 49, 819–826 (2013). https://doi.org/10.1134/S1022795413080097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413080097

Keywords

Navigation