Skip to main content
Log in

A new yeast strain for brewery: Properties and advantages

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Beer is a natural product and is a multicomponent system that has both positive and negative consumer properties. Organoleptical off-flavors of beer are difficult to eliminate. Yeasts are the main active component of the system. The relationship between beer quality and yeast usage is well known. New industrial strains for brewery are continuously developed. An industrial yeast Saccharomyces cerevisiae strain was obtained and showed high technological properties, including efficient fermentation, a reduced production of sulfur hydrate, and a high diacetyl reduction rate. The advantages made it possible to develop new brands of beer and nonalcoholic products. The commercial use of the strain was patented. The strain was deposited in the Russian Collection of Industrial Microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dequin, S., The Potential of Genetic Engineering for Improving Brewing, Wine-Making and Baking Yeast, Appl. Microbiol. Biotechnol., vol. 56, pp. 577–588.

  2. Naumova, E.S., Bulat, S.A., Mironenko, N.V., and Naumov, G.I., Differentiation of Six Sibling Species in the Saccharomyces sensu stricto Complex by Multilocus Enzyme Electrophoresis and UP-PCR Analysis, Antonie van Leeuwenhoek, 2003, vol. 83, pp. 155–166.

    Article  CAS  PubMed  Google Scholar 

  3. Nilsson-Tillgren, T., Gjermanse, C., Kidland-Brandt, M.C., et al., Genetic Differences between Saccharomyces carlsbergensis and Saccharomyces cerevisiae: Analysis of Chromosome III by Single Chromosome Transfer, Carlsberg Res. Commun., 1981, vol. 46, pp. 65–76.

    Article  CAS  Google Scholar 

  4. Nilsson-Tillgren, T., Petersen, J.G.L., Holmberg, S., and Kielland-Brandt, M.C., Transfer of Chromosome III during kar Mediated Cytoduction in Yeast, Carlsberg Res. Commun., 1980, vol. 45, pp. 113–117.

    Article  Google Scholar 

  5. Gjermansen, C., Nilsson-Tillgren, T., Petersen, J.G., et al., Towards Diacetyl-less Brewers’ Yeast: Influence of ilv2 and ilv5 Mutations, J. Basic Microbiol., 1988, vol. 28, pp. 175–183.

    Article  CAS  PubMed  Google Scholar 

  6. Tornai-Lehoczki, J. and Dlauchy, D., Delimination of Brewing Yeast Strains Using Different Molecular Techniques, Int. J. Food Microbiol., 2000, vol. 62, pp. 37–45.

    Article  CAS  PubMed  Google Scholar 

  7. Smits, H.P., Hauf, J., Müller, S., et al., Simultaneous Overexpression of Enzymes of the Lower Part of Glycolysis Can Enhance the Fermentative Capacity of Saccharomyces cerevisiae, Yeast, 2000, vol. 16, pp. 1325–1334.

    Article  CAS  Google Scholar 

  8. Steyn, J.C. and Pretorius, I.S., Co-Expression of Saccharomyces diastaticus Glucoamylase-Encoding Gene and a Bacillus amyloliquefaciens α-Amylase-Encoding Gene in Saccharomyces cerevisiae, Gene, 1991, vol. 100, pp. 85–93.

    Article  CAS  PubMed  Google Scholar 

  9. Penttilä, M., Suihko, M.L., Lehtinen, U., et al., Construction of Brewer’ Yeasts Secreting Fungal Endo-Glucanases, Curr. Genet., 1987, vol. 12, pp. 413–420.

    Article  Google Scholar 

  10. Penttilé, L., André, L., Saloheimo, M., et al., Expression of Two Trichoderms reesei Endoglucanases in the Yeast Saccharomyces cerevisiae, Yeast, 1987, vol. 3, pp. 175–185.

    Article  Google Scholar 

  11. Priest, F.G. and Campbell, I., Brewing Microbiology, Chapman and Hall, 2003.

  12. Simpson, W.J., A Rough Guide to Beer Flavour Assessment: 1. Beer Flavours, Assessors and Standards, Brewers’ Guardian, 1997, pp. 25–29.

  13. Romano, P. and Suzzi, G., Minirewiew: Origin and Production of Acetoin during Wine Yeast Fermentation, Appl. Environ. Microbiol., 1996, vol. 62, no. 2, pp. 309–315.

    CAS  PubMed  Google Scholar 

  14. Tezuka, H., Mori, T., Okumura, Y., et al., Cloninng of a Gene Suppressing Hydrogen Sulfite Production by Saccharomyces cerevisiae and Its Expression in a Brewing Yeast, J. Am. Soc. Brew. Chem., 1992, vol. 50, pp. 130–133.

    CAS  Google Scholar 

  15. Omura, F., Shibano, Y., Fukui, N., and Nakatani, K., Reduction of Hydrogen Sulfide Production in Brewing Yeast by Constitutive Expression of MET25 Gene, J. Am. Soc. Brew. Chem., 1995, vol. 53, pp. 58–62.

    CAS  Google Scholar 

  16. Hansen, J. and Kielland-Brandt, M., Inactivation of MET10 in Brewer’s Yeast Specifically Increases SO2 Formation during Beer Production, Nat. Biotechnol., 1996, vol. 14, pp. 1587–1589.

    Article  CAS  PubMed  Google Scholar 

  17. Hansen, J. and Kielland-Brandt, M., Inactivation of MET2 in Brewer’s Yeast Increases the Level of Sulfite in Beer, J. Biotechnol., 1996, vol. 50, pp. 75–78.

    Article  CAS  PubMed  Google Scholar 

  18. Attfield, P.V., Stress Tolerance: The Key to Effective Strains of Industrial Baker’s Yeast, Nat. Biotechnol., 1997, vol. 15, pp. 1351–1357.

    Article  CAS  PubMed  Google Scholar 

  19. DeRisi, J.L., Iyer, V.R., and Brown, P.O., Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale, Science, 1997, vol. 278, pp. 680–686.

    Article  CAS  PubMed  Google Scholar 

  20. Zakharov, I.A., Kozhin, S.A., et al., Sbornik metodik po genetike drozhzhei-sakharomitsetov (Methods in Yeasts-Saccharomycetes Genetics), Leningrad: Nauka, 1984.

    Google Scholar 

  21. Guthrie, C. and Fink, G., Guide to Yeast Genetics and Molecular Biology, Acad. Press, 1991.

  22. Lin, Y., Formulation and Testing of Cupric Sulfate Medium for Wild Yeast Detection, J. Inst. Brew., 1981, vol. 87, pp. 151–154.

    Google Scholar 

  23. Taylor, G.T. and Marsh, A.S., MYGP+Copper, a Medium That Detects Both Saccharomyces and Non-Saccharomyces Wild Yeast in the Presence of Culture Yeast, J. Inst. Brew., 1984, vol. 90, pp. 134–145.

    CAS  Google Scholar 

  24. Fogel, S., Welch, J.W., and Malony, D.H., The Molecular Genetic of Copper Resistance in Saccharomyces cerevisiae—a Paradigm for Non-Conventional Yeast, J. Basic Microbiol., 1988, vol. 28, pp. 147–160.

    Article  CAS  PubMed  Google Scholar 

  25. Haukeli, A.D. and Lie, S., The Influence of α-Acetohydroxy Acids on the Determination of Vicinal Diketons in Beer during Fermentation, J. Inst. Brew., 1977, vol. 77, pp. 538–543.

    Google Scholar 

  26. Analytica EBC. Vicinal Diketones in Beer: Gas Chromatographic, 2004, Method 9.24.2.

  27. Analytica EBC. Dimethyl Sulfate in Beer: Gas Chromatographic, 2004, Method 9.39.

  28. Analytica EBC. Fermentable Carbohydrates in Beer by HPLC, 2004, Method 9.27.

  29. Analytica-EBC. Real Degree of Fermentation of Beer, 2004, Method 9.5.

  30. Carle, G.F. and Olson, M.V., Separation of Chromosomal DNA Molecules from Yeast by Orthogonal-Field-Alternation Gel Electrophoresis, Nucleic Acids Res., 1984, vol. 12, no. 14, pp. 5647–5664.

    Article  CAS  PubMed  Google Scholar 

  31. Davydenko, S.G., et al., Chromosome Polymorphism in the Yeast Saccharomyces, Russ. J. Genet., 1990, vol. 26, no. 12, pp. 2135–2146.

    CAS  Google Scholar 

  32. Urbakh, V.Yu., Matematicheskaya statistika dlya biologov i medikov (Mathematical Statistics for Biologists and Medical Professionals), Moscow: Akad. Nauk SSSR, 1963.

    Google Scholar 

  33. Repnevskaya, M.V., Karpova, T.S., and Inge-Vechtomov, S.G., Hybridization and Cytoduction among Yeast Cells of the Same Mating Type, Curr. Genet., 1987, vol. 12, pp. 511–517.

    Article  Google Scholar 

  34. Steyn, J.C. and Pretorius, I.S., Co-Expression of Saccharomyces diastaticus Glucoamylase-Encoding Gene and a Bacillus amyloliquefaciens α-Amylase-Encoding Gene in Saccharomyces cerevisiae, Gene, 1991, vol. 100, pp. 85–93.

    Article  CAS  PubMed  Google Scholar 

  35. Naumov, G.I., Naumova, E.S., Masneuf, I., et al., Natural Polyploidization of Some Cultured Yeast Saccharomyces sensu stricto: Auto- and Allotetraploidy, Syst. Appl. Microbiol., 2000, vol. 23, no. 3, pp. 442–449.

    CAS  PubMed  Google Scholar 

  36. Bidenne, C., Blondin, B., Dequin, S., and Vezinhet, F., Analysis of Chromosomal DNA Polymorphism of Wine Yeast Strains of Saccharomyces cerevisiae, Curr. Genet., 1992, vol. 22, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jimenez, J. and Benitaz, T., Genetic Analysis of Highly Ethanol Tolerant Wine Yeast, Curr. Genet., 1987, vol. 12, no. 6, pp. 412–429.

    Article  Google Scholar 

  38. Davydenko, S.G., Afonin, D.B., Dedegkaev, A.T., et al., RF Patent 2340666, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Davydenko.

Additional information

Original Russian Text © S.G. Davydenko, B.F. Yarovoy, V.P. Stepanova, D.V. Afonin, B.E. Batashov, A.T. Dedegkaev, 2010, published in Genetika, 2010, Vol. 46, No. 11, pp. 1473–1484.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davydenko, S.G., Yarovoy, B.F., Stepanova, V.P. et al. A new yeast strain for brewery: Properties and advantages. Russ J Genet 46, 1295–1305 (2010). https://doi.org/10.1134/S1022795410110049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410110049

Keywords

Navigation