Skip to main content
Log in

Primate chromosome evolution: with reference to marker order and neocentromeres

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Establishing chromosomal homology in comparative cytogenetics remained speculative until the advent of molecular cytogenetics. Chromosome sorting by flow cytometry and degenerate oligonucleotide primed-PCR (DOP-PCR) brought a significant simplification and impetus to chromosome painting. Comparative chromosome painting has permitted reasonable hypotheses for ancestral karyotypes at many points on the phylogenetic tree of mammals. Derived associations often provided landmarks that showed the route evolution took. More recently hybridization with cloned DNA has provided information on intrachromosomal rearrangements. BAC-FISH allows marker order, in addition to syntenies and associations, to be added to the ancestral karyotypes. Comparisons of marker order across species revealed that centromere shifts (evolutionary new centromeres) are frequent and important phenomena of chromosome evolution. Further comparison between evolutionary new centromeres and clinical neocentromeres shows that an evolutionary perspective can provide compelling, underlying, explicative grounds for contemporary genomic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dutrillaux, B., Viegas-Pequignot, E., Dubos, C., and Masse, R., Complete or almost Complete Analogy of Chromosome Banding between the Baboon (Papio papio) and Man, Hum. Genet., 1978, vol. 43, no. 1, pp. 37–46.

    Article  CAS  PubMed  Google Scholar 

  2. Dutrillaux, B., Viegas-Pequignot, E., and Couturier, J., Great Homology of Chromosome Banding of the Rabbit (Oryctolagus cuniculus) and Primates, Including Man, Ann. Genet., 1980, vol. 23, no. 1, pp. 22–25.

    CAS  PubMed  Google Scholar 

  3. O’Brien, S.J. and Nash, W.G., Genetic Mapping in Mammals: Chromosome Map of Domestic Cat, Science, 1982, vol. 216, no. 4543, pp. 257–265.

    Article  PubMed  Google Scholar 

  4. Wienberg, J., Jauch, A., Stanyon, R., and Cremer, T., Molecular Cytotaxonomy of Primates by Chromosomal in situ Suppression Hybridization, Genomics, 1990, vol. 8, no. 2, pp. 347–350.

    Article  CAS  PubMed  Google Scholar 

  5. Jauch, A., Wienberg, J., Stanyon, R., et al., Reconstruction of Genomic Rearrangements in Great Apes and Gibbons by Chromosome Painting, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, no. 18, pp. 8611–8615.

    Article  CAS  PubMed  Google Scholar 

  6. Stanyon, R., Wienberg, J., Romagno, D., et al., Molecular and Classical Cytogenetic Analyses Demonstrate an Apomorphic Reciprocal Chromosomal Translocation in Gorilla gorilla, Am. J. Phys. Anthropol., 1992, vol. 88, no. 2, pp. 245–250.

    Article  CAS  PubMed  Google Scholar 

  7. Wienberg, J., Stanyon, R., Jauch, A., and Cremer, T., Homologies in Human and Macaca fuscata Chromosomes Revealed by in situ Suppression Hybridization with Human Chromosome Specific DNA Libraries, Chromosoma, 1992, vol. 101, nos. 5–6, pp. 265–270.

    Article  CAS  PubMed  Google Scholar 

  8. Ferguson-Smith, M.A., Yang, F., Rens, W., and O’Brien, P.C., The Impact of Chromosome Sorting and Painting on the Comparative Analysis of Primate Genomes, Cytogenet. Genome Res., 2005, vol. 108, nos. 1–3, pp. 112–121.

    Article  CAS  PubMed  Google Scholar 

  9. Stanyon, R. and Stone, G., Phylogenomic Analysis by Chromosome Sorting and Painting, Methods Mol. Biol., 2008, vol. 422, pp. 13–29.

    Article  CAS  PubMed  Google Scholar 

  10. Murphy, W.J., Fronicke, L., O’Brien, S.J., and Stanyon, R., The origin of human chromosome 1 and its homologs in placental mammals, Genome Res., 2003, vol. 13, no.8, pp. 1880–1888.

    CAS  PubMed  Google Scholar 

  11. Muller, S., Stanyon, R., O’Brien, P.C., et al., Defining the Ancestral Karyotype of All Primates by Multidirectional Chromosome Painting between Tree Shrews, Lemurs and Humans, Chromosoma, 1999, vol. 108, no. 6, pp. 393–400.

    Article  CAS  PubMed  Google Scholar 

  12. Fronicke, L., Muller-Navia, J., Romanakis, K., and Scherthan, H., Chromosomal Homeologies between Human, Harbor Seal (Phoca vitulina) and the Putative Ancestral Carnivore Karyotype Revealed by Zoo-FISH, Chromosoma, 1997, vol. 106, no. 2, pp. 108–113.

    Article  CAS  PubMed  Google Scholar 

  13. Murphy, W.J., Stanyon, R., O’Brien, S.J., Evolution of Mammalian Genome Organization Inferred from Comparative Gene Mapping, Genome Biol., 2001, vol. 2, no. 6, p. REVIEWS0005.

    Article  CAS  PubMed  Google Scholar 

  14. Balmus, G., Trifonov, V.A., Biltueva, L.S., et al., Cross-Species Chromosome Painting among Camel, Cattle, Pig and Human: Further Insights into the Putative Cetartiodactyla Ancestral Karyotype, Chromosome Res., 2007, vol. 15, no. 4, pp. 499–515.

    Article  CAS  PubMed  Google Scholar 

  15. Graphodatsky, A.S., Yang, F., Dobigny, G., et al., Tracking Genome Organization in Rodents by Zoo-FISH, Chromosome Res., 2008, vol. 16, no. 2, pp. 261–274.

    Article  CAS  PubMed  Google Scholar 

  16. Graphodatsky, A.S., Yang, F., Perelman, P.L., et al., Comparative Molecular Cytogenetic Studies in the Order Carnivora: Mapping Chromosomal Rearrangements onto the Phylogenetic Tree, Cytogenet. Genome Res., 2002, vol. 96, nos. 1–4, pp. 137–145.

    Article  CAS  PubMed  Google Scholar 

  17. Kulemzina, A.I., Trifonov, V.A., Perelman, P.L., et al., Cross-Species Chromosome Painting in Cetartiodactyla: Reconstructing the Karyotype Evolution in Key Phylogenetic Lineages, Chromosome Res., 2009, vol. 17, no. 3, pp. 419–436.

    Article  CAS  PubMed  Google Scholar 

  18. Li, T., O’Brien, P.C., Biltueva, L., et al., Evolution of Genome Organizations of Squirrels (Sciuridae) Revealed by Cross-Species Chromosome Painting, Chromosome Res., 2004, vol. 12, no. 4, pp. 317–335.

    Article  PubMed  Google Scholar 

  19. Trifonov, V.A., Stanyon, R., Nesterenko, A.I., et al., Multidirectional Cross-Species Painting Illuminates the History of Karyotypic Evolution in Perissodactyla, Chromosome Res., 2008, vol. 16, no.1, pp. 89–107.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, F., Graphodatsky, A.S., Li, T., et al., Comparative Genome Maps of the Pangolin, Hedgehog, Sloth, Anteater and Human Revealed by Cross-Species Chromosome Painting: Further Insight into the Ancestral Karyotype and Genome Evolution of Eutherian Mammals, Chromosome Res., 2006, vol. 14, no. 3, pp. 283–296.

    Article  CAS  PubMed  Google Scholar 

  21. Liehr, T., Heller, A., Starke, H., et al., Microdissection Based High Resolution Multicolor Banding for All 24 Human Chromosomes, Int. J. Mol. Med., 2002, vol. 9, no. 4, pp. 335–339.

    CAS  PubMed  Google Scholar 

  22. Stanyon, R., Rocchi, M., Capozzi, O., et al., Primate Chromosome Evolution: Ancestral Karyotypes, Marker Order and Neocentromeres, Chromosome Res., 2008, vol. 16, no. 1, pp. 17–39.

    Article  CAS  PubMed  Google Scholar 

  23. Avarello, R., Pedicini, A., Caiulo, A., et al., Evidence for an Ancestral Alphoid Domain on the Long Arm of Human Chromosome 2, Hum. Genet., 1992, vol. 89, no. 2, pp. 247–249.

    Article  CAS  PubMed  Google Scholar 

  24. Rocchi, M., Stanyon, R., and Archidiacono, N., Evolutionary new centromeres in primates, Prog. Mol. Subcell. Biol., 2009, vol. 48, pp. 103–152.

    Article  CAS  PubMed  Google Scholar 

  25. Ventura, M., Antonacci, F., Cardone, M.F., et al., Evolutionary Formation of New Centromeres in Macaque, Science, 2007, vol. 316, no. 5822, pp. 243–246.

    Article  CAS  PubMed  Google Scholar 

  26. Marshall, O.J., Chueh, A.C., Wong, L.H., and Choo, K.H., Neocentromeres: New Insights into Centromere Structure, Disease Development, and Karyotype Evolution, Am. J. Hum. Genet., 2008, vol. 82, no. 2, pp. 261–282.

    Article  CAS  PubMed  Google Scholar 

  27. Amor, D.J., Bentley, K., Ryan, J., et al., Human Centromere Repositioning “in Progress”, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 17, pp. 6542–6547.

    Article  CAS  PubMed  Google Scholar 

  28. Ventura, M., Mudge, J.M., Palumbo, V., et al., Neocentromeres in 15q24-26 Map to Duplicons Which Flanked an Ancestral Centromere in 15q25, Genome Res., 2003, vol. 13, no. 9, pp. 2059–2068.

    Article  CAS  PubMed  Google Scholar 

  29. Cardone, M.F., Alonso, A., Pazienza, M., et al., Independent Centromere Formation in a Capricious, Gene-Free Domain of Chromosome 13q21 in Old World Monkeys and Pigs, Genome Biol., 2006, vol. 7, no. 10, p. R91.

    Article  PubMed  Google Scholar 

  30. Capozzi, O., Purgato, S., D’Addabbo, P., et al., Evolutionary Descent of a Human Chromosome 6 Neocentromere: A Jump Back to 17 Million Years Ago, Genome Res., 2009, vol. 19, no. 5, pp. 778–784.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stanyon.

Additional information

Original Russian Text © R. Stanyon, F. Bigoni, 2010, published in Genetika, 2010, Vol. 46, No. 9, pp. 1226–1233.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanyon, R., Bigoni, F. Primate chromosome evolution: with reference to marker order and neocentromeres. Russ J Genet 46, 1087–1093 (2010). https://doi.org/10.1134/S102279541009019X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541009019X

Keywords

Navigation