Skip to main content
Log in

Evolutionary deviations from the universal genetic code in ciliates

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review surveys the information, including the most recent data, on the evolution of genetic code in ciliates, which is among the few codes deviating from the universal one. We discuss the cases of recurrent, independently arising deviations from the assignments of standard codons of polypeptide chain termination in the mitochondrial and nuclear genomes of ciliates and some other protozoans. Possible molecular mechanisms are considered, which underlie deviations from standard termination code to coding glutamine (codon UAA and UAG) and cystein or tryptophane (codon UGA) in the nuclear genome. Critical analysis of the main hypotheses on the evolution of secondary deviations from the universal code in ciliates is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kawaguchi, Y., Honda, H., Tanuguchi-Morimura, J., and Iwasaki, S., The Codon CUG Is Read as Serine in an Asporogenic Yeast Candida cylindracea, Nature, 1989, vol. 341, pp. 164–166.

    Article  PubMed  CAS  Google Scholar 

  2. Schneider, S.U., Leible, M.B., and Yang, X., Strong Homology between the Small Subunit of Ribulose-1,5-Biphosphate Carboxylase Oxygenase of Two Species of Acetabularia, Mol. Gen. Genet., 1989, vol. 218, pp. 445–452.

    Article  PubMed  CAS  Google Scholar 

  3. Fox, T.D, Natural Variation in the Genetic Code, Ann. Rev. Genet., A. Compbell, B.S. Barker, I. Herskawitz, L.A. Sandler, Eds., Polo Alto, California, 1987, vol. 21, pp. 67–91.

  4. Lukashenko, N.P. and Rybakova, Z.I., Struktura i funktsiya genomov prosteishikh (Structure and Function of Protozoan Genomes), Moscow: Nauka, 1991.

    Google Scholar 

  5. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.A., and Böck, A., Gene for a Novel tRNA Species That Accepts L-Serine and Contranslationally Inserts Selenocysteine, Nature, 1988, vol. 331, pp. 723–725.

    Article  PubMed  CAS  Google Scholar 

  6. Leinfelder, W., Stadtman, T.C., and Böck, A., Occurrence in vivo of Selenocysteyl-tRNASer in Escherichia coli, J. Biol. Chem., 1989, vol. 264, pp. 9720–9723.

    PubMed  CAS  Google Scholar 

  7. Leinfelder, W., Forchhammer, K., Veprek, B., et al., In vitro Syntesis of Selenocysteinyl-tRNAUGA from Seryl-tRNAUGA: Involvement and Characterization of the sel D Gene Product, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 543–547.

    Article  PubMed  CAS  Google Scholar 

  8. Zinoni, F., Birkmann, A., Stadtman, T., and Böck, A., Nucleotide Sequence and Expression of the Selenocysteine-Containing Polypeptide of Formate Dehydrogenase (Formate-Hydrogen-Lyase-Linked) from Escherichia coli, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 4650–4654.

    Article  PubMed  CAS  Google Scholar 

  9. Zinoni, F., Birkmann, A., Leinfelder, W., and Böck, A., Cotranslational Insertion of Selenocysteine into Formate Dehydrogenase from Escherichia coli Directed by a UGA Codon, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 3156–3160.

    Article  PubMed  CAS  Google Scholar 

  10. Böck, A., Forchhammer, K., Heider, J., and Baron, C., Selenoprotein Synthesis: An Expansion of the Genetic Code, Trends Biochem. Sci., 1991, vol. 16, pp. 463–467.

    Article  PubMed  Google Scholar 

  11. Böck, A., Forchhammer, K., Heider, J., et al., Selenocysteine: The 21st Aminoacid, Mol. Microbiol., 1991, vol. 5, pp. 515–520.

    Article  PubMed  Google Scholar 

  12. Hatfield, D., Choi, I.S., Mischke, S., and Owens, L.D., Selenocysteyl-tRNA Recognize UGA in Beta vulgaris, a Higher Plant and in Glyocladiun virens, a Filamentous Fungus, Biochem. Biophys. Res. Commun., 1992, vol. 184, pp. 254–259.

    Article  PubMed  CAS  Google Scholar 

  13. Hatfield, D. and Diamond, A.M., UGA: A Split Personality in the Universal Genetic Code, Trends Genet. Lett., 1993, vol. 9, pp. 69–70.

    Article  CAS  Google Scholar 

  14. Söll, D., Enter a New Amino Acid, Nature, 1988, vol. 331, pp. 662–663.

    Article  PubMed  Google Scholar 

  15. Srinivasan, G., James, C.M., and Krzycki, J.A., Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA, Science, 2002, vol. 296, pp. 1459–1462.

    Article  PubMed  CAS  Google Scholar 

  16. Srinivasan, G., Translation of the Amber Codon in Methylamine Methyltransferase Genes of a Methanogenic Archaeon, PhD. Thesis, Ohio: State Univ. Microbiol. Columbus, 2003, p. 163.

    Google Scholar 

  17. Alkins, J.F. and Gesteland, R.F., The 22nd Amino Acid, Science, 2002, vol. 296, pp. 1409–1410.

    Article  Google Scholar 

  18. James, C.M., Ferguson, T.K., Leykam, J.F., and Krzycki, J.A., The Amber Codon in the Gene Encoding Monomethylamine Methyltransferase Isolated from Methanosarcina barkeri Is Translated as a Sense Codon, J. Biol. Chem., 2001, vol. 276, pp. 34252–34258.

    Article  PubMed  CAS  Google Scholar 

  19. Hao, B., Gong, W., Ferguson, T.K., et al., A New UAG-Encoded Residue in the Structure of a Methanogen Methyltransferase, Science, 2002, vol. 296, pp. 1462–1465.

    Article  PubMed  CAS  Google Scholar 

  20. Ibba, M. and Söll, D., Genetic Code: Introducing Pyrrolysine, Curr. Biol., 2002, vol. 12, pp. R464–R466.

    Article  PubMed  CAS  Google Scholar 

  21. Polycarpo, C., Ambrogelly, A., Bérubé, A., et al., An Aminoacyl-tRNA Synthetase That Specifically Activates Pyrrolysine, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 12450–12454.

    Article  PubMed  CAS  Google Scholar 

  22. Théobald-Dietrich, A., Frugier, M., Giegé, R., and Rudinger-Thirion, J., Atypical Archaeal tRNA Pyrrolysine Transcript Behaves Towards EF-Tu as a Typical Elongator tRNA, Nucleic Acids Res., 2004, vol. 32, pp. 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  23. Knight, R.D., Freeland, S.J., and Landweber, L.F., Selection, History and Chemistry: The Three Faces of the Genetic Code, Trends Biochem. Sci., 1999, vol. 24, pp. 241–247.

    Article  PubMed  CAS  Google Scholar 

  24. Knight, R.D. and Landweber, L.F., The Early Evolution of the Genetic Code, Cell, 2000, vol. 101, pp. 569–572.

    Article  PubMed  CAS  Google Scholar 

  25. Knight, R.D., Freeland, S.J., and Landweber, L.F., Rewiring the Keyboard: Evolvability of the Genetic Code, Genetics, 2001, vol. 2, pp. 49–58.

    PubMed  CAS  Google Scholar 

  26. Seilhamer, J.J. and Cummings, D.J., Altered Genetic Code in Paramecium tetraurelia Mitochondria: Possible Evolutionary Trends, Mol. Gen. Genet., 1982, vol. 187, pp. 236–239.

    Article  PubMed  CAS  Google Scholar 

  27. Fox, D.T., Diverged Genetic Codes in Protozoans and Bacterium, Nature, 1985, vol. 314, pp. 132–133.

    Article  PubMed  CAS  Google Scholar 

  28. Benne, R., De Vries, B.F., Van den Burg, J., et al., The Nucleotide Sequence of a Segment of Trypanosoma brucei Mitochondrial Maxicircle DNA That Contains the Gene for Apocytochrome b and Some Unusual Unassigned Reading Frames, Nucleic Acids Res., 1983, vol. 11, pp. 6925–6941.

    Article  PubMed  CAS  Google Scholar 

  29. Johnson, B.J.B., Hill, G.C., and Donelson, J.E., The Maxicircle of Trypanosoma brucei Kinetoplast DNA Encodes Apocytochrome b, Mol. Biochem. Parasitol., 1984, vol. 13, pp. 135–146.

    Article  PubMed  CAS  Google Scholar 

  30. de la Cruz, V.F., Neckelmann N., and Simpson, S., Sequences of 6 Genes and Several Open Reading Frames in the Kinetoplast Maxicircle DNA of Leishmania tarentolae, J. Biol. Chem., 1984, vol. 259, pp. 15136–15147.

    PubMed  Google Scholar 

  31. Barrell, B.G., Bankier, A.T., and Drouin, J.A., A Different Genetic Code in Human Mitochondria, Nature, 1979, vol. 282, pp. 189–194.

    Article  PubMed  CAS  Google Scholar 

  32. Anderson, S., Bankier, A.T., Barrell, B.G., et al., Sequence and Organization of the Human Mitochondrial Genome, Nature, 1981, vol. 290, pp. 457–474.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson, S., de Bruijn, M.H.L., Coulson, A.R., et al., Complete Sequence of Bovine Mitochondrial DNA: Conserved Features of the Mammalian Mitochondrial Genome, J. Mol. Biol., 1982, vol. 156, pp. 683–717.

    Article  PubMed  CAS  Google Scholar 

  34. Bibb, M.J., Van Etten, R.A., Wright, C.T., et al., Sequence and Gene Organization of Mouse Mitochondrial DNA, Cell, 1981, vol. 26, pp. 167–180.

    Article  PubMed  CAS  Google Scholar 

  35. Roe, B.A., Ma, D.P., Wilson, R.K., and Wong, J.F.H., The Complete Nucleotide Sequence of the Xenopus laevis Mitochondrial Genome, J. Biol. Chem., 1985, vol. 260, pp. 9759–9774.

    PubMed  CAS  Google Scholar 

  36. de Bruijn, M.H.L., Drosophila melanogaster Mitochondrial DNA: A Novel Organization and the Genetic Code, Nature, 1983, vol. 304, pp. 234–241.

    Article  PubMed  Google Scholar 

  37. Benne, R., Van Den Burg, J., Brakenhoff, J.P.J., et al., Major Transcript of the Frameshifted cox II Gene from Trypanosome Mitochondria Contains Four Nucleotides That Are not Encoded in the DNA, Cell, 1986, vol. 46, pp. 819–826.

    Article  PubMed  CAS  Google Scholar 

  38. Wolstenholme, D.R., Clary, D.O., Macfarlane, J.L., et al., Organization and Evolution of Invertebrate Mitochondrial Genomes, in Archievements and Perspectives of Mitochondrial Research: Biogenesis, Amsterdam: Elsevier, 1985, vol. 2, pp. 61–69.

    Google Scholar 

  39. Ohama, T., Osawa, S., Watanabe, K., and Jukes, T.H., Evolution of the Mitochondrial Genetic Code: VI. AAA as an Asparagine Codon in Some Animal Mitochondria, J. Mol. Evol., 1990, vol. 30, pp. 329–332.

    Article  PubMed  CAS  Google Scholar 

  40. Fox, T.D. and Staempfli, S., Supressor of Yeast Mitochondrial Ochre Mutations That Maps in or near the 15S Ribosomal RNA Gene of mtDNA, Proc. Natl. Acad. Sci. USA, 1982, vol. 79, pp. 1583–1587.

    Article  PubMed  CAS  Google Scholar 

  41. Osawa, S. and Jukes, T.H., Evolution of the Genetic Code as Affected by Anticodon Content, Trends Genet., 1988, vol. 4, pp. 191–198.

    Article  PubMed  CAS  Google Scholar 

  42. Osawa, S. and Jukes, T.H., Codon Reassignment (Codon Capture) in Evolution, J. Mol. Evol., 1989, vol. 28, pp. 271–278.

    Article  PubMed  CAS  Google Scholar 

  43. Jukes, T.H. and Osawa, S., The Genetic Code in Mitochondria and Chloroplasts, Experientia, 1990, vol. 46, pp. 1117–1126.

    Article  PubMed  CAS  Google Scholar 

  44. Macino, G., Coruzzi, G., Nobrega, F., et al., Use of the UGA Terminator as a Tryptophan Codon in Yeast Mitochondria, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 3784–3785.

    Article  PubMed  CAS  Google Scholar 

  45. Caron, F. and Meyer, E., Does Paramecium primaurelia Use a Different Genetic Code in Its Macronucleus?, Nature, 1985, vol. 314, pp. 185–188.

    Article  PubMed  CAS  Google Scholar 

  46. Meyer, E., Caron, F., and Guiard, B., Blocking of in vitro Translation of Paramecium Messenger RNAs Is due to Messenger RNA Primary Structure, Biochimie, 1984, vol. 66, pp. 403–412.

    Article  PubMed  CAS  Google Scholar 

  47. Preer, J.R., Jr., Preer, L.B., Rudman, B.M., and Barnett, A.J., Deviation from the Universal Code Shown by the Gene for Surface Protein 51A in Paramecium, Nature, 1985, vol. 314, pp. 188–190.

    Article  PubMed  CAS  Google Scholar 

  48. Horowitz, S. and Gorovsky, M.A., An Unusual Genetic Code in Nuclear Genes of Tetrahymena, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 2452–2455.

    Article  PubMed  CAS  Google Scholar 

  49. Hanyu, N., Kuchino, Y., Nishimura, S., and Beier, H., Dramatic Events in Ciliate Evolution: Alteration of UAA and UAG Termination Codons to Glutamine Codons Due to Anticodon Mutations in Two Tetrahymena tRN A GlnS , EMBO J., 1986, vol. 5, pp. 1307–1311.

    PubMed  CAS  Google Scholar 

  50. Herrick, G., Hunter, D., Williams, K., and Kotter, K., Alternate Processing during Development of a Micronuclear Chromosome Family in Oxytricha fallax, Genes Dev., 1987, vol. 1 P, pp. 1047–1058.

    Article  Google Scholar 

  51. Harper, D.S. and Jahn, C.L., Differential Use of Termination Codons in Ciliated Protozoa, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 191–201.

    Google Scholar 

  52. Miceli, C., La Terza A., Melli M. Isolation and Structural Characterization of cDNA Clones Encoding the Mating Pheromone Er-1 Secreted by the Ciliate Euplotes raikovi, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 3016–3020.

    Article  PubMed  CAS  Google Scholar 

  53. Liang, A. and Heckmann, K., Blepharisma Uses UAA as a Termination Codon, Naturwissenschaften, 1993, vol. 80, pp. 225–226.

    Article  PubMed  CAS  Google Scholar 

  54. Meyer, F., Schmidt, H.J., Plumper, E., et al., UGA Is Translated as Cysteine in Pheromone 3 of Euplotes octocarinatus, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 3758–3761.

    Article  PubMed  CAS  Google Scholar 

  55. Meyer, F., Schmidt, H.J., and Heckmann, K., Feromone 4 Gene of Euplotes octocarinatus, Dev. Genet., 1992, vol. 13, pp. 16–25.

    Article  PubMed  CAS  Google Scholar 

  56. Liang, A., Brünen-Nieweler, C., Muramatsu, T., et al., The Ciliate Euplotes octocarinatus Expresses Two Polypeptide Release Factors of the Type eRF1, Gene, 2001, vol. 262, pp. 161–168.

    Article  PubMed  CAS  Google Scholar 

  57. Jahn, C.L., Doctor, S.Z., Frels, J.S., et al., Structure of the Euplotes crassus Tec 1 and Tec 2 Elements: Identification of Putative Transposase Coding Regions, Gene, 1993, vol. 133, pp. 71–78.

    Article  PubMed  CAS  Google Scholar 

  58. Baroin Tourancheau, A., Tsao, N., Klobutcher, L.A., et al., Genetic Code Deviation in the Ciliates: Evidence for Multiple and Independent Events, EMBO J., 1995 vol. 14, pp. 3262–3267.

    Google Scholar 

  59. Barahone, I., Soares, H., Cyrne, I., et al., Sequence of One α- and β-Tubulin Genes of Tetrahymena pyriformis, J. Mol. Biol., 1988, vol. 202, pp. 365–382.

    Article  Google Scholar 

  60. Hirono, M., Erdoh, H., Okada, N., et al., Tetrahymena Actin: Cloning and Sequencing of the Tetrahymena Actin Gene and Identification of Its Gene Product, J. Mol. Biol., 1987, vol. 194, pp. 181–192.

    Article  PubMed  CAS  Google Scholar 

  61. Prat, A., Katinka, M., Caron, F., and Meyer, E., Nucleotide Sequence of the Paramecium primaurelia G Surface Protein: A Huge Protein with a Highly Periodic Structure, J. Mol. Biol., 1986, vol. 189, pp. 47–60.

    Article  PubMed  CAS  Google Scholar 

  62. Preer, J.R., Preer, L.B., Rudman, B.U., and Barnett, A.J., Deviation from the Universal Code Shown by the Gene for Surface Protein 51A in Paramecium, Nature, 1985, vol. 311, pp. 188–190.

    Article  Google Scholar 

  63. Kink, J.A., Maley, M.E., Preston, R.R., et al., Mutations in Paramecium Calmodulin Indicate Functional Differences between the C-Terminal and N-Terminal Lobes in vivo, Cell, 1990, vol. 62, pp. 165–174.

    Article  PubMed  CAS  Google Scholar 

  64. Dupuis, P., Structure, organization et expression des genes de tubuline chez la Paramecie, PhD Thesis, Paris: Univ. Paris, 1992, p. 230.

    Google Scholar 

  65. Lozupone, C.A., Knight, R.D., and Landweber, L.F., The Molecular Basis of Nuclear Genetic Code Change in Ciliates, Curr. Biol., 2001, vol. 11, pp. 65–74.

    Article  PubMed  CAS  Google Scholar 

  66. Caron, F., Eukaryotic Codes, Experientia, 1990, vol. 46, pp. 1106–1117.

    Article  PubMed  CAS  Google Scholar 

  67. Greenwood, S.J., Sogin, M.L., and Linn, D.H., Phylogenetic Relationship within the Class Oligohymenophorea, Phylum Ciliophora, Inferred from the Complete Small Subunit rRNA Gene Sequences of Colpidum campylum, Glaucoma chattoni, and Opistonecta henneguyi, J. Mol. Evol., 1991, vol. 33, pp. 163–174.

    Article  PubMed  CAS  Google Scholar 

  68. Baroin, A., Perasso, R., Qu, L.-H., et al., Partial Phylogeny of the Unicellular Eukaryotes Based on Rapid Sequencing of a Portion of 28S Ribosomal RNA, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 3474–3478.

    Article  PubMed  CAS  Google Scholar 

  69. Baroin-Tourancheau, A., Delgado, P., Perasso, R., and Adoutte, A., Broad Molecular Phylogeny of Ciliates: Identification of Major Evolutionary Trends and Radiations within the Phylum, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 9764–9768.

    Article  PubMed  CAS  Google Scholar 

  70. Osawa, S., Jukes, T.H., Watanabe, K., and Muto, A., Recent Evidence for Evolution of the Genetic Code, Microbiol. Rev., 1992, vol. 56, pp. 229–264.

    PubMed  CAS  Google Scholar 

  71. Doolittle, R.F., Convergent Evolution: The Need to Be Explicit, Trends Biochem. Sci., 1994, vol. 19, pp. 15–18.

    Article  PubMed  CAS  Google Scholar 

  72. Inagaki, Y. and Doolittle, W.F., Class I Release Factors in Ciliates with Variant Genetic Codes, Nucleic Acids Res., 2001, vol. 29, pp. 921–927.

    Article  PubMed  CAS  Google Scholar 

  73. Ninio, J., Divergence in the Genetic Code, Biochem. System. Ecol., 1986, vol. 14, pp. 455–457.

    Article  CAS  Google Scholar 

  74. Prescott, D.M., The DNA of Ciliated Protozoa, Microbiol. Rev., 1994, vol. 58, pp. 233–267.

    PubMed  CAS  Google Scholar 

  75. Lukashenko, N.P. and Rybakova, Z.I., Genetika infuzorii: Tetrahymena i Paramecium (Genetics of Infusorians: Tetrahymena and Paramecium), Moscow: Nauka, 1986.

    Google Scholar 

  76. Cherry, J.M. and Blackburn, E.H., The Internally Located Telomeric Sequences in the Germ-Line Chromosomes of Tetrahymena Are at the Ends of Transposon- Like Elements, Cell, 1985, vol. 43, pp. 747–758.

    Article  PubMed  CAS  Google Scholar 

  77. Wyman, C. and Blackburn, E.H., Tel-1 Transposon- Like Elements of Tetrahymena thermophila Are Associated with Micronuclear Genome Rearrangements, Genetics, 1991, vol. 128, pp. 57–67.

    Google Scholar 

  78. Hunter, D., Williams, K., Gantinhour, S., and Herrick, G., Precise Excision of Telomere-Bearing Transposons during Macronuclear Development in Oxytricha fallax, Genes Dev., 1989, vol. 3, pp. 2101-2112.

  79. Doak, T.G., Doerder, F.P., Jahn, C.L., and Herric, G., A Family of Transposase Genes in Transposons Found in Prokaryotes, Multilocular Eukaryotes and Ciliated Protozoans, Proc. Natl. Acad. Sci. USA, 1993, vol. 91, pp. 942–946.

    Article  Google Scholar 

  80. Wilson, A.K., Molecular Bases of Evolution, Sci. Am., 1985, no. 12, pp. 122–132.

  81. Dubinin, N.P., Potential Change in DNA and Mutations, in Molekulyarnaya tsitogenetika (Molecular Cytogenetics), Moscow: Nauka, 1985, vol. 99, issue 1, pp. 3–21.

    Google Scholar 

  82. Kurland, C.G., Canback, B., and Berg, O.G., Horizontal Gene Transfer: A Critical View, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 9658–9662.

    Article  PubMed  CAS  Google Scholar 

  83. Gogarten, J.P., Doolittle, W.F., and Lawrence, J.G., Prokaryotic Evolution in Light of Gene Transfer, Mol. Biol. Evol., 2002, vol. 19, pp. 2226–2238.

    PubMed  CAS  Google Scholar 

  84. Kurland, C.G., Something for Everyone: Horizontal Gene Transfer in Evolution, EMBO J., 2000, vol. 1, pp. 92–95.

    Article  CAS  Google Scholar 

  85. Faguy, D.M. and Doolittle, W.F., Horizontal Transfer of Catalase-Peroxidase Genes between Arhaea and Pathogenic Bacteria, Trends Genet., 2000, vol. 16, pp. 196–197.

    Article  PubMed  CAS  Google Scholar 

  86. Hotopp, J.C.D., Clark, M.E., Oliveira, D.C.S.G., et al., Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes, Science, 2007, vol. 317, pp. 1753–1756.

    Article  PubMed  CAS  Google Scholar 

  87. Morrison, H.G., McArthur, A.G., Gillin, F.D., et al., Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia, Science, 2007, vol. 317, pp. 1921–1926.

    Article  PubMed  CAS  Google Scholar 

  88. Doolittle, W.F., Phylogenetic Classification and the Universal Tree, Science, 1999, vol. 284, pp. 2124–2129.

    Article  PubMed  CAS  Google Scholar 

  89. Woese, C.R., The Universal Ancestor, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 6854–6859.

    Article  PubMed  CAS  Google Scholar 

  90. Woese, C.R., Interpreting the Universal Phylogenetic Tree, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 8392–8396.

    Article  PubMed  CAS  Google Scholar 

  91. Woese, C.R., On the Evolution of Cells, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 8742–8747.

    Article  PubMed  CAS  Google Scholar 

  92. Karlberg, O., Canback, B., Kurland, C.G., and Andersson, S.G.E., The Dual Origin of the Yeast Mitochondrial Proteome, Yeast, 2000, vol. 17, pp. 170–187.

    Article  PubMed  CAS  Google Scholar 

  93. Canback, B., Andersson, S.G.E., and Kurland, C.G., The Global Phylogeny of Glycolytic Enzymes, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 6097–6102.

    Article  PubMed  CAS  Google Scholar 

  94. Jukes, T.H., Bessho, Y., Ohama, T., and Osawa, S., Release Factors and Genetic Code, Nature, 1991, vol. 352, p. 575.

    Article  PubMed  CAS  Google Scholar 

  95. Osawa, S., Evolution of the Genetic Code, Oxford: Oxford Univ. Press, 1995.

    Google Scholar 

  96. Jukes, T.H., Neutral Changes and Modifications of the Genetic Code, Theor. Popul. Biol., 1996, vol. 49, pp. 143–145.

    Article  PubMed  CAS  Google Scholar 

  97. Andersson, S.G.E. and Kurland, C.G., Codon Preferences in Free-Living Microorganisms, Microbiol. Rev., 1990, vol. 54, pp. 198–210.

    PubMed  CAS  Google Scholar 

  98. Andersson, S.G.E. and Kurland, C.G., An Extreme Codon Preference Strategy: Codon Reassignment, Mol. Biol. Evol., 1991, vol. 8, pp. 530–544.

    PubMed  CAS  Google Scholar 

  99. Schultz, D.W. and Yarus, M., A Simple and Sensitive in vivo Luciferase Assay for tRNA-Mediated Nonsence Suppression, J. Bacteriol., 1990, vol. 172, pp. 595–602.

    PubMed  CAS  Google Scholar 

  100. Schultz, D.W. and Yarus, M., tRNA Structure and Ribosomal Function: II. Interaction between Anticodon Helix and Other tRNA Mutations, J. Mol. Biol., 1994, vol. 235, pp. 1395–1405.

    Article  PubMed  CAS  Google Scholar 

  101. Schultz, D.W. and Yarus, M., tRNA Structure and Ribosomal Function: I. tRNA Nucleotide 27–43 Mutations Enhance First Position Wobble, J. Mol. Biol., 1994, vol. 235, pp. 1381–1394.

    Article  PubMed  CAS  Google Scholar 

  102. Schultz, D.W. and Yarus, M., Transfer RNA Mutation and Malleability of the Genetic Code, J. Mol. Biol., 1994, vol. 235, pp. 1377–1380.

    Article  PubMed  CAS  Google Scholar 

  103. Schultz, D.W. and Yarus, M., On Malleability in the Genetic Code, J. Mol. Evol., 1996, vol. 42, pp. 597–601.

    Article  PubMed  CAS  Google Scholar 

  104. Yarus, M. and Schultz, D.W., Response: Further Comment on Codon Reassignment, J. Mol. Evol., 1997, vol. 45, pp. 1–8.

    Article  Google Scholar 

  105. Santos, M.A., Chusman, C., Costa, V., et al., Selective Advantages Created by Codon Ambiguity Allowed for the Evolution of an Alternative Genetic Code in Candida spp., Mol. Microbiol., 1999, vol. 31, pp. 937–947.

    Article  PubMed  CAS  Google Scholar 

  106. Wagner, G.P. and Altenberg, L., Complex Adaptations and the Evolution of Evoluability, Evolution, 1996, vol. 50, pp. 967–976.

    Article  Google Scholar 

  107. Andersson, S.G. and Kurland, C.G., Genomic Evolution Drives the Evolution of the Translation System, Biochem. Cell Biol., 1995, vol. 73, pp. 775–787.

    Article  PubMed  CAS  Google Scholar 

  108. Andersson, S.G. and Kurland, C.G., Reductive Evolution of Resident Genomes, Trends Microbiol., 1998, vol. 6, pp. 263–268.

    Article  PubMed  CAS  Google Scholar 

  109. Caron, F., Deviations from the ‘Universal’ Genetic Code, Microbiol. Sci., 1986, vol. 3, pp. 36–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.P. Lukashenko, 2009, published in Genetika, 2009, Vol. 45, No. 4, pp. 437–448.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukashenko, N.P. Evolutionary deviations from the universal genetic code in ciliates. Russ J Genet 45, 379–388 (2009). https://doi.org/10.1134/S1022795409040012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409040012

Keywords

Navigation