Skip to main content
Log in

Induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.)

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) have been determined in order to develop an efficient system for transformation of Russian cultivars of spring wheat. Short-term (two days) cold treatment (4°C) has been demonstrated to distinctly increase the frequency of morphogenetic callus induction. The optimal phytohormonal composition of the nutrient medium ensuring an in vitro regeneration rate of the common wheat cultivar Lada as high as 90% has been determined. The optimal temporal parameters of genetic transformation of wheat plants (10–14 days of culturing after initiation of a morphogenetic callus) have been determined for two transformation methods: biolistic without precipitated DNA and transformation with the plasmid psGFP-BAR. Analysis of the transient expression of the gfp gene has confirmed that 14 days of culturing is the optimal duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piruzyan, E.S., Kobets, N.S., Mett, V.L., et al., Transgenic Plants Expressing Foreign Genes as a Model for Studying Plant Stress Responses and a Source for Resistant Plant Forms, Fiziol. Rast., 2000, vol. 47, no. 3, pp. 370–381.

    Google Scholar 

  2. Vasil, V., Castillo, A.M., Fromm, M.E., and Vasil, I.K., Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus, Biotechnol., 1992, vol. 10, pp. 667–674.

    Article  CAS  Google Scholar 

  3. Clausen, M., Krauter, R., Schachermayr, G., et al., Antifungal Activity of a Virally Encoded Gene in Transgenic Wheat, Nature Biotechnol., 2000, vol. 18, pp. 446–449.

    Article  CAS  Google Scholar 

  4. Chen, W.P., Gu, X., Liang, G.H., et al., Introduction and Constitutive Expression of a Rice Chitinase Gene in Bread Wheat Using Biolistic Bombardment and the bar Gene as a Selectable Marker, Theor. Appl. Genet., 1998, vol. 97, pp. 1296–1306.

    Article  CAS  Google Scholar 

  5. Altpeter, F., Diaz, I., McAuslane, H., Gaddour, K., et al., Increased Insect Resistance in Transgenic Wheat Stably Expressing Trypsin Inhibitor Cme, Mol. Breed., 1999, vol. 5, pp. 53–63.

    Article  CAS  Google Scholar 

  6. Stoger, E., Williams, S., Christou, P., et al., Expression of the Insecticidal Lectin from Snowdrop (Galanthus nivalis Agglutinin; GNA) in Transgenic Wheat Plants: Effect on Predation by the Grain Aphid Sitobion avenae, Mol. Breed., 1999, vol. 5, pp. 65–73.

    Article  CAS  Google Scholar 

  7. Karunaratne, S., Sohn, A., Mouradev, A., et al., Transformation of Wheat with the Gene Encoding the Coat Protein of Barley Yellow Mosaic Virus, Austral. J. Plant Physiol., 1996, vol. 23, pp. 429–435.

    Article  CAS  Google Scholar 

  8. Barro, F., Rooke, L., Bekes, F., et al., Transformation of Wheat with High Molecular Weight Glutenin Subunit Genes Results in Improved Functional Properties, Nature Biotechnol., 1997, vol. 15, pp. 1295–1299.

    Article  CAS  Google Scholar 

  9. Blechl, A.E., Le, H.Q., and Anderson, O.D., Engineering Changes in Wheat Flour by Genetic Transformation, J. Plant Physiol., 1998, vol. 152, pp. 703–707.

    CAS  Google Scholar 

  10. He, G.Y., Rooke, L., Steele, S., et al., Transformation of Pasta Wheat (Triticum turgidum L. var durum) with High-Molecular Weight Glutenin Subunit Genes and Modification of Dough Functionality, Mol. Breed., 1999, vol. 5, pp. 377–386.

    Article  CAS  Google Scholar 

  11. Rooke, L., Bekes, F., Fido, R., et al., Overexpression of a Gluten Protein in Transgenic Wheat Results in Greatly Increased Dough Strength, J. Cereal Sci., 1999, vol. 30, pp. 115–120.

    Article  CAS  Google Scholar 

  12. Baga, M, Chibbar, R.N, and Kartha, K.K, Expression and Regulation of Transgenes for Selection of Transformants and Modification of Traits in Cereals, Advances in Cellular and Molecular Biology of Plants, Vasil, I.K., Ed., vol. 5 of Molecular Improvement of Cereal Crops, Dordrecht: Kluwer, 1999, pp. 83–132.

    Google Scholar 

  13. Pukhalskii, V.A., Smirnov, S.P., Korostyleva, T.V., et al., Genetic Transformation of Wheat Triticum aestivum L. via Agrobacterium tumefaciens, Russ. J. Genet., 1996, vol. 32, no. 11, pp. 1202–1206.

    Google Scholar 

  14. Wu, H., Sparks, C., Amoah, B., et al., Factors Influencing Successful Agrobacterium-Mediated Genetic Transformation of Wheat, Plant Cell Rep., 2003, vol. 21, pp. 659–668.

    PubMed  CAS  Google Scholar 

  15. Pellegrineschi, A., Noguera, L.M., Skovmand, B., et al., Identification of Highly Transformable Wheat Genotypes for Mass Production of Fertile Transgenic Plants, Genome, 2002, vol. 45, pp. 421–430.

    Article  PubMed  CAS  Google Scholar 

  16. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  17. Gaponenko, A.K., Muntyan, M.I., Malikova, N.I., and Sozinov, A.A., Regeneration of Wheat (Triticum aestivum L.) Plants in vitro, Tsitol. Genet., 1985, vol. 19, no. 5, pp. 335–339.

    Google Scholar 

  18. Finer, J.J., Vain, P., Jones, M.W., and McMullen, M.D., Development of the Particle Inflow Gun for DNA Delivery to the Plant Cells, Plant Cell Rep., 1992, vol. 11, pp. 323–328.

    Article  CAS  Google Scholar 

  19. Fadeev, V.S., Blinkova, O.V., and Gaponenko, A.K., Optimization of Biological and Physical Parameters for Biolistic Genetic Transformation of Common Wheat (Triticum aestivum L.) Using a Particle Inflow Gun, Russ. J. Genet., 2006, vol. 42, no. 4, pp. 402–411.

    Article  CAS  Google Scholar 

  20. Chalfie, M., Tu, Y., Euskirchen, G., et al., Green Fluorescent Protein as a Marker for Gene Expression, Science, 1994, no. 263, pp. 802–805.

  21. Richards, H.A., Rudas, V.A., Sun, H., et al., Construction of a GFP-Bar Plasmid and Its Use for Switch Grass Transformation, Plant Cell Rep., 2001, vol. 20, pp. 48–54.

    Article  CAS  Google Scholar 

  22. Plokhinskii N.A., Biometriya (Biometry), Moscow: Mosk. Gos. Univ., 1970.

    Google Scholar 

  23. Shimada, T., Plant Regeneration from the Callus Induced from Wheat Embryo, Japan. J. Genet., 1978, vol. 53, pp. 371–374.

    Article  Google Scholar 

  24. Sears, R.G. and Deckard, E.L., Tissue Culture Variability in Wheat: Callus Induction and Plant Regeneration, Crop Sci., 1982, vol. 22, pp. 546–550.

    Google Scholar 

  25. Maddock, S.E., Landcarster, V.A., Risiott, R., et al., Plant Regeneration from Culture Immature Embryos and Inflorescences of 25 Cultivar of Wheat (T. aestivum L.), J. Exptl. Botany, 1983, vol. 34, no. 144, pp. 915–926.

    Article  Google Scholar 

  26. Gaponenko, A.K., Malikova, N.I., and Okhrimenko, G.N., Production of Somatic Lines in Cereals (Triticum aestivum L. and Hordeum vulgare L.), Dokl. Akad. Nauk SSSR, 1985, vol. 238, no. 6, pp. 1471–1475.

    Google Scholar 

  27. Immonen, A.T., Influence of Media and Growth Regulators on Somatic Embryogenesis and Plant Regeneration of Primary Triticales, Plant Cell Tissue Organ Cult., 1996, vol. 44, pp. 45–52.

    Article  CAS  Google Scholar 

  28. Kiarostami, K.H. and Ebrahimzadeh, H., Effect of Cold Treatment on Precocious Germination in Somatic Embryogenesis of Wheat (Triticum aestivum L.), N. Z. J. Crop Horticult. Sci., 2001, vol. 29, pp. 209–212.

    Google Scholar 

  29. Babaeva, S.A., Petrova, T.F., and Gaponenko, A.K., Polyploidy and Polyteny in Cereal Cells Cultured in vitro, Russ. J. Genet., 1995, vol. 31, no. 5, pp. 581–585.

    Google Scholar 

  30. Gaponenko, A.K., Muntyan, M.A., Malikova, N.I., and Sozinov, A.A., Regeneration of Wheat (Triticum aestivum L.) Plants with Different Genotypes in vitro, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 5, pp. 1231–1235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Fadeev.

Additional information

Original Russian Text © V.S. Fadeev, H.R. Shimshilashvili, A.K. Gaponenko, 2008, published in Genetika, 2008, Vol. 44, No. 9, pp. 1257–1267.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadeev, V.S., Shimshilashvili, H.R. & Gaponenko, A.K. Induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.). Russ J Genet 44, 1096–1104 (2008). https://doi.org/10.1134/S1022795408090135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795408090135

Keywords

Navigation