Skip to main content
Log in

Incarnation of classical pro- and eukaryotic mechanisms of mutagenesis in hypermutagenesis and immunity of vertebrates

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

M.E. Lobashev has brilliantly postulated in 1947 that error-prone repair contribute to mutations in cells. This was shown to be true once the mechanisms of UV mutagenesis in Escherichia coli were deciphered. Induced mutations are generated during error-prone SOS DNA repair with the involvement of inaccurate DNA polymerases belonging to the Y family. Currently, several distinct mutator enzymes participating in spontaneous and induced mutagenesis have been identified. Upon induction of these proteins, mutation rates increase by several orders of magnitude. These proteins regulate the mutation rates in evolution and in ontogeny during immune response. In jawed vertebrates, somatic hypermutagenesis occurs in the variable regions of immunoglobulin genes, leading to affinity maturation of antibodies. The process is initiated by cytidine deamination in DNA to uracil by AID (Activation-Induced Deaminase). Further repair of uracil-containing DNA through proteins that include the Y family DNA polymerases causes mutations, induce gene conversion, and class switch recombination. In jawless vertebrates, the variable lymphocyte receptors (VLR) serve as the primary molecules for adaptive immunity. Generation of mature VLRs most likely depends on agnathan AID-like deaminases. AID and its orthologs in lamprey (PmCDA1 and PMCDA2) belong to the AID/APOBEC family of RNA/DNA editing cytidine deaminases. This family includes enzymes with different functions: APOBEC1 edits RNA, APOBEC3 restricts retroviruses. The functions of APOBEC2 and APOBEC4 have not been yet determined. Here, we report a new member of the AID/APOBEC family, APOBEC5, in the bacterium Xanthomonas oryzae. The widespread presence of RNA/DNA editing deaminases suggests that they are an ancient means of generating genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lobashev, M.E., Physiological (Paranecrotic) Hypothesis of the Mutation Process, Vestn. Leningr. Univ., 1947, no. 8, pp. 10–29.

  2. Setlow, R. and Setlow, J.K., Effects of Radiation on Polynucleotides, Annu. Rev. Biophys. Bioeng., 1972, vol. 1, pp. 293–346.

    PubMed  Google Scholar 

  3. Altshuler, M., Recovery of DNA Replication in UV-Damaged Escherichia coli, Mutat. Res., 1993, vol. 294, no. 2, pp. 91–100.

    PubMed  CAS  Google Scholar 

  4. Rupp, W.D. and Howard-Flanders, P., Discontinuities in the DNA Synthesized in an Excision-Defective Strain of Escherichia coli Following Ultraviolet Irradiation, J. Mol. Biol., 1968, vol. 31, pp. 291–304.

    PubMed  CAS  Google Scholar 

  5. Heller, R.C. and Marians, K.J., Replication ork Reactivation Downstream of a Blocked Nascent Leading Strand, Nature, 2006, vol. 439, pp. 557–562.

    PubMed  CAS  Google Scholar 

  6. Lopes, M., Foiani, M., and Sogo, J.M., Multiple Mechanisms Control Chromosome Integrity after Replication Fork Uncoupling and Restart at Irreparable UV Lesions, Mol. Cell, 2006, vol. 21, pp. 15–27.

    PubMed  CAS  Google Scholar 

  7. Witkin, E.M., Ultraviolet Mutagenesis and Inducible DNA Repair in Escherichia coli, Bact. Rev., 1976, vol. 40, no. 4, pp. 869–907.

    PubMed  CAS  Google Scholar 

  8. Defais, M., Fauquet, P., Radman, M., and Errera, M., Ultraviolet Reactivation and Ultraviolet Mutagenesis of λ in Different Genetic Systems, Virology, 1971, vol. 43, pp. 495–503.

    PubMed  CAS  Google Scholar 

  9. Radman, M., Phenomenology of an Inducible Mutagenic DNA Repair Pathways in Escherichia coli SOS Hypothesis, Molecular and Environmental Aspects of Mutagenesis, Tabor, H.W., Ed., Springfild: Charles C. Thomas Publ., 1974, pp. 128–142.

    Google Scholar 

  10. Radman, M., SOS Hypothesis: Phenomenology of an Inducible Mutagenic DNA Repair which is Accompanied by Mutagenesis, Molecular Mechanisms for Repair of DNA, Hanawalt, P. and Setlow, R.B., Eds., New York: Plenum, 1975, part A, pp. 355–367.

    Google Scholar 

  11. Witkin, E.M. and George, D.L., Ultraviolet Mutagenesis in polA and uvrA polA Derivatives of Escherichia coli B/r: Evidence for an Inducible Error-Prone Repair System, Genetics, 1973, vol. 73, suppl., pp. 91–108.

    PubMed  Google Scholar 

  12. Witkin, E.M., Elevated Mutability of polA and uvrA polA Derivatives of Escherichia coli B/r at Sublethal Doses of Ultraviolet Light: Evidence for an Inducible Error-Prone Repair System (“SOS Repair”) and Its Anomalous Expression in these Strains, Genetics, 1975, vol. 79 suppl., pp. 199–213.

    PubMed  Google Scholar 

  13. Friedberg, E.C., Walker, G.C., and Siede, W., DNA Repair and Mutagenesis, Washington: ASM, 1995, pp. 407–522.

    Google Scholar 

  14. Tang, M., Shen, X., Frank, E.G., et al., UmuD’2C Is an Error-Prone DNA Polymerase, Escherichia coli pol V, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 8919–8924.

    PubMed  CAS  Google Scholar 

  15. Reuven, N.B., Arad, G., Maor-Shoshani, A., and Livneh, Z., The Mutagenic Protein UmuC Is a DNA Polymerase Activated by UmuD’, RecA, and SSB and Is Specialized for Translesion Replication, J. Biol. Chem., 1999, vol. 274, pp. 31 763–31 766.

    CAS  Google Scholar 

  16. Goodman, M.F. and Tippin, B.T., Sloppier Copier DNA Polymerases Involved in Genome Repair, Curr. Opin. Gen. Dev., 2000, vol. 10, pp. 162–168.

    CAS  Google Scholar 

  17. Wagner, J., Gruz, P., Kim, S.R., et al., The dinB Gene Encodes a Novel E. coli DNA Polymerase, DNA pol IV, Involved in Mutagenesis, Mol. Cell, 1999, vol. 4, pp. 281–286.

    PubMed  CAS  Google Scholar 

  18. Kim, S.-R., Matsui, K., Yamada, M., et al., Roles of Chromosomal and Episomal dinB Genes Encoding DNA pol IV in Targeted and Untargeted Mutagenesis in Escherichia coli, Mol. Genet. Genom, 2001, vol. 266, pp. 207–215.

    CAS  Google Scholar 

  19. Yang, W., Portraits of a Y-Family DNA Polymerase, FEBS Lett., 2005, vol. 579, pp. 868–872.

    PubMed  CAS  Google Scholar 

  20. Shcherbakova, P.V. and Fijalkowska, I.J., Translesion Synthesis DNA Polymerases and Control of Genome Stability, Front. Biosc., 2006, vol. 11, pp. 2496–2517.

    CAS  Google Scholar 

  21. Pavlov, Y.I., Shcherbakova, P.V., and Rogozin, I.B., Roles of DNA Polymerases in Replication, Repair and Recombination in Eukaryotes, Int. Rev. Cytol., 2006, vol. 255, pp. 41–132.

    PubMed  CAS  Google Scholar 

  22. Lone, S., Townson, S.A., Uljon, S.N., et al., Human DNA Polymerase Encircles DNA: Implications for Mismatch Extension and Lesion Bypass, Mol. Cell, 2007, vol. 25, pp. 601–614.

    PubMed  CAS  Google Scholar 

  23. Nelson, J.R., Lawrence, C.W., and Hinkle, D.C., Deoxycytidyl Transferase Activity of Yeast REV1 Protein, Nature, 1996, vol. 382, pp. 729–731.

    PubMed  CAS  Google Scholar 

  24. Haracska, L., Prakash, S., and Prakash, L., Yeast Rev1 Protein Is a G Template-Specific DNA Polymerase, J. Biol. Chem., 2002, vol. 277, pp. 15 546–15 551.

    CAS  Google Scholar 

  25. Lin, W., Xin, H., Zhang, Y., et al., The Human REV1 Gene Codes for a DNA Template-Dependent dCP Transferase, Nucleic Acids Res., 1999, vol. 27, pp. 4468–4475.

    PubMed  CAS  Google Scholar 

  26. Nair, D.T., Johnson, R.E., Prakash, L., et al., Rev1 Employs a Novel Mechanism of DNA Synthesis Using a Protein Template, Science, 2005, vol. 309, pp. 2219–2222.

    PubMed  CAS  Google Scholar 

  27. Pavlov, Y.I., Nguyen, D., and Kunkel, T.A., Mutator Effects of Overproducing DNA Polymerase η(Rad30) and Its Catalytically Inactive Variant in Yeast, Mutat. Res., 2001, vol. 478, pp. 129–139.

    PubMed  CAS  Google Scholar 

  28. King, N.M., Nikolaishvili-Feinberg, N., Bryant, M.F., et al., Overproduction of DNA Polymerase Does not Raise the Spontaneous Mutation Rate in Diploid Human Fibroblasts, DNA Repair (Amsterdam), 2005, vol. 4, pp. 714–724.

    CAS  Google Scholar 

  29. Kusumoto, R., Masutani, C., Shimmyo, S., et al., DNA Binding Properties of Human DNA Polymerase eta: Implications for Fidelity and Polymerase Switching of Translesion Synthesis, Genes Cells, 2004, vol. 9, pp. 1139–1150.

    PubMed  CAS  Google Scholar 

  30. McCulloch, S.D., Kokoska, R.J., Chilkova, O., et al., Enzymatic Switching for Efficient and Accurate Translesion DNA Replication, Nucleic Acids Res., 2004, vol. 32, pp. 4665–4675.

    PubMed  CAS  Google Scholar 

  31. Haracska, L., Acharya, N., Unk, I., et al., A Single Domain in Human DNA Polymerase iota Mediates Interaction with PCNA: Implications for Translesion DNA Synthesis, Mol. Cell. Biol., 2005, vol. 25, pp. 1183–1190.

    PubMed  CAS  Google Scholar 

  32. Haracska, L., Johnson, R.E., Unk, I., et al., Physical and Functional Interactions of Human DNA Polymerase eta with PCNA, Mol. Cell Biol., 2001, vol. 21, pp. 7199–7206.

    PubMed  CAS  Google Scholar 

  33. Haracska, L., Johnson, R.E., Unk, I., et al., Targeting of Human DNA Polymerase iota to the Replication Machinery via Interaction with PCNA, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 14256–14261.

    PubMed  CAS  Google Scholar 

  34. Hoege, C., Pfander, B., Moldovan, G.L., et al., RAD6-Dependent DNA Repair Is Linked to Modification of PCNA by Ubiquitin and SUMO, Nature, 2002, vol. 419, pp. 135–141.

    PubMed  CAS  Google Scholar 

  35. Kannouche, P.L., Wing, J., and Lehmann, A.R., Interaction of Human DNA Polymerase eta with Monoubiquitinated PCNA: A Possible Mechanism for the Polymerase Switch in Response to DNA Damage, Mol. Cell, 2004, vol. 14, pp. 491–500.

    PubMed  CAS  Google Scholar 

  36. Stelter, P. and Ulrich, H.D., Control of Spontaneous and Damage-Induced Mutagenesis by SUMO and Ubiquitin Conjugation, Nature, 2003, vol. 425, pp. 188–191.

    PubMed  CAS  Google Scholar 

  37. Bienko, M., Green, C.M., Crosetto, N., et al., Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis, Science, 2005, vol. 310, pp. 1821–1824.

    PubMed  CAS  Google Scholar 

  38. Garg, P. and Burgers, P.M., Ubiquitinated Proliferating Cell Nuclear Antigen Activates Translesion DNA Polymerases eta and REV1, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 18361–18366.

    PubMed  CAS  Google Scholar 

  39. Huang, T.T., Nijman, S.M., Mirchandani, K.D., et al., Regulation of Monoubiquitinated PCNA by DUB Autocleavage, Nat. Cell. Biol., 2006, vol. 8, pp. 341–347.

    Google Scholar 

  40. Ulrich, H.D., Deubiquitinating PCNA: A Downside to DNA Damage Tolerance, Nat. Cell. Biol., 2006, vol. 8, pp. 303–305.

    PubMed  CAS  Google Scholar 

  41. Miura, A., Ultraviolet-Induced Mutation of Bacteriophage λ, Mol. Gen. Genet., 1974, vol. 134, pp. 21–27.

    PubMed  CAS  Google Scholar 

  42. Milstein, C. and Rada, C., The Maturation of Immune Response, London: APress, 1995.

    Google Scholar 

  43. Samaranayake, M., Bujnicki, J.M., Carpenter, M., and Bhagwat, A.S., Evaluation of Molecular Models for the Affinity Maturation of Antibodies: Roles of Cytosine Deamination by AID and DNA Repair, Chem. Rev., 2006, vol. 106, pp. 700–719.

    PubMed  CAS  Google Scholar 

  44. Papavasiliou, F.N. and Schatz, D.G., Somatic Hypermutation of Immunoglobulin Genes: Merging Mechanisms for Genetic Diversity, Cell, 2002, vol. 109, pp. S35–S44.

    PubMed  CAS  Google Scholar 

  45. Berek, C. and Milstein, C., The Dynamic Nature of the Antibody Repertoire, Immunol. Rev., 1988, vol. 105, pp. 5–26.

    PubMed  CAS  Google Scholar 

  46. Rogozin, I.B. and Kolchanov, N.A., Somatic Hypermutagenesis in Immunoglobulin Genes: II. Influence of Neighbouring Base Sequences on Mutagenesis, Biochim. Biophys. Acta, 1992, vol. 1171, pp. 11–18.

    PubMed  CAS  Google Scholar 

  47. Neuberger, M.S. and Milstein, C., Somatic Hypermutation, Curr. Opin. Immunol., 1995, vol. 7, pp. 248–254.

    PubMed  CAS  Google Scholar 

  48. Storb, U., The Molecular Basis of Somatic Hypermutation of Immunoglobulin Genes, Curr. Opin. Immunol., 1996, vol. 8, pp. 206–214.

    PubMed  CAS  Google Scholar 

  49. Talmage, D.W., Immunological Specificity, Unique Combinations of Selected Natural Globulins Provide an Alternative to the Classical Concept, Science, 1959, vol. 129, pp. 1643–1648.

    PubMed  CAS  Google Scholar 

  50. Sharma, J.M., The Structure and Function of the Avian Immune System, Acta Vet. Hung., 1997, vol. 45, pp. 229–238.

    PubMed  CAS  Google Scholar 

  51. Muramatsu, M., Sankaranand, V.S., Anant, S., et al., Specific Expression of Activation-Induced Cytidine Deaminase (AID), a Novel Member of the RNA-Editing Deaminase Family in Germinal Center B Cells, J. Biol. Chem., 1999, vol. 274, pp. 18470–18476.

    PubMed  CAS  Google Scholar 

  52. Muramatsu, M., Kinoshita, K., Fagarasan, S., et al., Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme, Cell, 2000, vol. 102, pp. 553–563.

    PubMed  CAS  Google Scholar 

  53. Revy, P., Muto, T., Levy, Y., et al., Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2), Cell, 2000, vol. 102, pp. 565–575.

    PubMed  CAS  Google Scholar 

  54. Arakawa, H., Hauschild, J., and Buerstedde, J.M., Requirement of the Activation-Induced Deaminase (AID) Gene for Immunoglobulin Gene Conversion, Science, 2002, vol. 295, pp. 1301–1306.

    PubMed  CAS  Google Scholar 

  55. Harris, R.S., Sale, J.E., Petersen-Mahrt, S.K., and Neuberger, M.S., AID Is Essential for Immunoglobulin V Gene Conversion in a Cultured B Cell Line, Curr. Biol, 2002, vol. 12, pp. 435–438.

    PubMed  CAS  Google Scholar 

  56. Teng, B., Burant, C.F., and Davidson, N.O., Molecular Cloning of an Apolipo-Protein B Messenger RNA Editing Protein, Science, 1993, vol. 260, pp. 1816–1819.

    PubMed  CAS  Google Scholar 

  57. Scott, J., A Place in the World for RNA Editing, Cell, 1995, vol. 81, pp. 833–836.

    PubMed  CAS  Google Scholar 

  58. Petersen-Mahrt, S.K., Harris, R.S., and Neuberger, M.S., AID Mutates E. coli Suggesting a DNA Deamination Mechanism for Antibody Diversification, Nature, 2002, vol. 418, pp. 99–104.

    PubMed  CAS  Google Scholar 

  59. Mayorov, V.I., Rogozin, I.B., Adkison, L.R., et al., Expression of AID in Yeast Induces Mutations in the Context of Somatic Hypermutation in IG Genes, BMC Immunol., 2005, vol. 6, p. 10.

    PubMed  Google Scholar 

  60. Pham, P., Bransteitter, R., Petruska, J., and Goodman, M.F., Processive AID-Catalysed Cytosine Deamination on ssDNA Simulates SHM, Nature, 2003, vol. 424, pp. 103–107.

    PubMed  CAS  Google Scholar 

  61. Poltoratsky, V., Prasad, R., Horton, J.K., and Wilson, S.H., Down-Regulation of DNA Polymerase Accompanies Somatic Hypermutation in Human BL2 Cell Lines, DNA Repair, 2007, vol. 6, pp. 244–253.

    PubMed  CAS  Google Scholar 

  62. Diaz, M. and Lawrence, C., An Update on the Role of Translesion Synthesis DNA Polymerases in Ig Hypermutation, Trends Immunol., 2005, vol. 26, pp. 215–220.

    PubMed  CAS  Google Scholar 

  63. Delbos, F., De Smet, A., Faili, A., et al., Contribution of DNA Polymerase eta to Immunoglobulin Gene Hypermutation in the Mouse, J. Exp. Med., 2005, vol. 201, pp. 1191–1196.

    PubMed  CAS  Google Scholar 

  64. Martomo, S.A., Yang, W.W., Wersto, R.P., et al., Different Mutation Signatures in DNA Polymerase eta and MSH6-Deficient Mice Suggest Separate Roles in Antibody Diversification, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 8656–8661.

    PubMed  CAS  Google Scholar 

  65. Zeng, X., Winter, D.B., Kasmer, C., et al., DNA Polymerase eta Is an A-T Mutator in Somatic Hypermutation of Immunoglobulin Variable Genes, Nat. Immunol., 2001, vol. 2, pp. 537–541.

    PubMed  CAS  Google Scholar 

  66. Matsuda, T., Bebenek, K., Masutani, C., et al., Error Rate and Specificity of Human and Murine DNA Polymerase, J. Mol. Biol., 2001, vol. 312, pp. 335–346.

    PubMed  CAS  Google Scholar 

  67. Rogozin, I.B., Pavlov, Y.I., Bebenek, K., et al., Somatic Mutation Hotspots Correlate with DNA pol η Error Spectrum, Nat. Immunol, 2001, vol. 2, pp. 530–536.

    PubMed  CAS  Google Scholar 

  68. Pavlov, Y.I., Rogozin, I.B., Galkin, A.P., et al., Correlation of Somatic Hypermutation Specificity and A-T Base Pair Substitution Errors by DNA Polymerase η during Copying of a Mouse Immunoglobulin Kappa Light Chain Transgene, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 9954–9959.

    PubMed  CAS  Google Scholar 

  69. Zhang, W., Bardwell, P.D., Woo, C.J., et al., Clonal Instability of V Region Hypermutation in the Ramos Burkitt’s Lymphoma Cell Line, Int. Immunol., 2001, vol. 13, pp. 1175–1184.

    PubMed  CAS  Google Scholar 

  70. Yoshikawa, K., Okazaki, I.M., Eto, T., et al., AID Enzymeinduced Hypermutation in an Actively Transcribed Gene in Fibroblasts, Science, 2002, vol. 296, pp. 2033–2036.

    PubMed  CAS  Google Scholar 

  71. Martin, A., Bardwell, P.D., Woo, C.J., et al., Activation-Induced Cytidine Deaminase Turns on Somatic Hypermutation in Hybridomas, Nature, 2002, vol. 415, pp. 802–806.

    PubMed  CAS  Google Scholar 

  72. Neuberger, M.S., Harris, R.S., Di Noia, J., and Petersen-Mahrt, S.K., Immunity through DNA Deamination, Trends Biochem. Sci., 2003, vol. 28, pp. 305–312.

    PubMed  CAS  Google Scholar 

  73. Okazaki, I.M., Hiai, H., Kakazu, N., et al., Constitutive Expression of AID Leads to Tumorigenesis, J. Exp. Med., 2003, vol. 197, pp. 1173–1181.

    PubMed  CAS  Google Scholar 

  74. Matsumoto, Y., Marusawa, H., Kinoshita, K., et al., Helicobacter Pylori Infection Triggers Aberrant Expression of Activation-Induced Cytidine Deaminase in Gastric Epithelium, Nature Medicine, 2007, vol. 13, pp. 470–476.

    PubMed  CAS  Google Scholar 

  75. Rada, C., Williams, G.T., Nilsen, H., et al., Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice, Curr. Biol., 2002, vol. 12, pp. 1748–1755.

    PubMed  CAS  Google Scholar 

  76. Stavnezer, J. and Schrader, C., Mismatch Repair Converts AID Instigated Nicks to Double-Strand Breaks for Antibody Classwitch Recombination, Trends Genet., 2006, vol. 22, pp. 23–28.

    PubMed  CAS  Google Scholar 

  77. Reina-San-Martin, B., Chen, H.T., Nussenzweig, A., and Nussenzweig, M.C., ATM is Required for Efficient Recombination between Immunoglobulin Switch Regions, J. Exp. Med., 2004, vol. 200, pp. 1103–1110.

    PubMed  CAS  Google Scholar 

  78. Franco, S., Gostissa, M., Zha, S., et al., Histone H2AX Prevents DNA Breaks from Progressing to Chromosome Breaks and Translocations, Mol. Cell, 2006, vol. 21, pp. 201–214.

    PubMed  CAS  Google Scholar 

  79. Vallur, A.C., Yabuki, M., Larson, E.D., and Maizels, N., AID in Antibody Perfection, Cell. Mol. Life Sci., 2007, vol. 64, pp. 555–565.

    PubMed  CAS  Google Scholar 

  80. Rada, C., Di Noia, J., and Neuberger, M., Mismatch Recognition and Uracil-Excision Provide Complementary Paths to Both Immunoglobulin Switching and the Second (dA:dT-Focussed) Phase of Somatic Mutation, Mol. Cell, 2004, vol. 16, pp. 163–171.

    PubMed  CAS  Google Scholar 

  81. Poltoratsky, V.P., Wilson, S.H., Kunkel, T.A., and Pavlov, Y.I., Recombinogenic Phenotype of Human Activation-Induced Cytosine Deaminase, J. Immunol., 2004, vol. 172, pp. 4308–4313.

    PubMed  CAS  Google Scholar 

  82. Litman, G.W., Evolution of Antigen Binding Receptors, Annu. Rev. Immunol., 1999, vol. 17, pp. 109–147.

    PubMed  CAS  Google Scholar 

  83. Conticello, S.G., Thomas, C.J.F., Petersen-Mahrt, S.K., and Neuberger, M.S., Evolution of AID/APOBEC Family of Polynucleotide (Deoxy)Cytidine Deaminases, Mol. Biol. Evol., 2006, vol. 22, pp. 367–377.

    Google Scholar 

  84. Pancer, Z., Amemiya, C.T., Ehrhardt, G.R., et al., Somatic Diversification of Variable Lymphocyte Receptors in the Agnathan Sea Lamprey, Nature, 2004, vol. 430, pp. 174–180.

    PubMed  CAS  Google Scholar 

  85. Alder, M.N., Rogozin, I.B., Iyer, L.M., et al., Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate, Science, 2005, vol. 310, pp. 1970–1973.

    PubMed  CAS  Google Scholar 

  86. Pancer, Z., Saha, N.R., Kasamatsu, J., et al., Variable Lymphocyte Receptors in Hagfish, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 9224–9229.

    PubMed  CAS  Google Scholar 

  87. Nagawa, F., Kishishita, N., Shimizu, K., et al., Antigen-Receptor Genes of the Agnathan Lamprey Are Assembled by a Process Involving Copy Choice, Nat. Immunol., 2007, vol. 8, no. 2, pp. 206–213.

    PubMed  CAS  Google Scholar 

  88. Rogozin, I.B., Lakshminarayan, M.I., Liang, L., et al., Evolution and Diversification of Lamprey Antigen Receptors: Evidence for Involvement of an AID-APOBEC Family Cytosine Deaminase, Nat. Immunol., 2007, vol. 8, no. 6, pp. 647–656.

    PubMed  CAS  Google Scholar 

  89. Rogozin, I.B., Basu, M.K., Jordan, I.K., et al., APOBEC4, a New Member of the AID/APOBEC Family of Polynucleotide (Deoxy)Cytidine Deaminases Predicted by Computational Analysis, Cell Cycle, 2005, vol. 4, pp. 1281–1285.

    PubMed  CAS  Google Scholar 

  90. Lewine, B., Genes VII, Oxford: Oxford Univ. Press, 2000.

    Google Scholar 

  91. Sheehy, A.M., Gaddis, N.C., Choi, J.D., and Malim, M.H., Isolation of a Human Gene that Inhibits HIV-1 and Is Suppressed by the Viral Vif, Nature, 2002, vol. 418, pp. 646–650.

    PubMed  CAS  Google Scholar 

  92. Douaisi, M., Dussart, S., Courcoul, M., et al., HIV-1 and MLV GAG Proteins Are Sufficient to Recruit APOBEC3G into Virus-Like Particles, Biochem. Biophys. Res. Comm., 2004, vol. 321, pp. 566–573.

    PubMed  CAS  Google Scholar 

  93. Sheehy, A.M., Gaddis, N.C., and Malim, M.H., The Antiretroviral Enzyme APO-BEC3G Is Degraded by the Proteasome in Response to HIV-1 VIF, Nature Med., 2003, vol. 9, pp. 1404–1407.

    PubMed  CAS  Google Scholar 

  94. Chiu, Y.-L. and Greene, W.C., APOBEC3 Cytidine Deaminases: Distinct Antiviral Actions along the Retroviral Life Cycle, JBC, 2006, vol. 281, no. 13, pp. 8309–8312.

    CAS  Google Scholar 

  95. Franca, R., Spadari, S., and Maga, G., APOBEC Deaminases as Cellular Antiviral Factors: A Novel Natural Host Defence Mechanism, Med. Sci. Monit., 2006, vol. 12, no. 5, pp. RA92–98.

    PubMed  CAS  Google Scholar 

  96. Turelli, P. and Trono, D., Editing at the Crossroad of Innate and Adaptive Immunity, Science, 2005, vol. 307, pp. 1061–1065.

    PubMed  CAS  Google Scholar 

  97. Waterston, R.H., Lindblad-Toh, K., Birney, E., et al., Initial Sequencing and Comparative Analysis of the Mouse Genome, Nature, 2002, vol. 420, pp. 520–562.

    PubMed  CAS  Google Scholar 

  98. Bogerd, H.P., Wiegand, H.L., Doehle, B.P., and Cullen, B.R., The Intrinsic Antiretroviral Factor APOBEC3B Contains Two Enzymatically Active Cytidine Deaminase Domains, Virology, 2007 (in press).

  99. Prochnow, C., Bransteitter, R., Klein, M.G., et al., The APOBEC-2 Crystal Structure and Functional Implications for the Deaminase AID, Nature, 2007, vol. 445, pp. 447–451.

    PubMed  CAS  Google Scholar 

  100. Zhang, K.-L., Mangeat, B., Ortiz, M., et al., Model Structure of Human APOBEC3G, PLoS ONE, 2007, vol. 4, p. e378.

    Google Scholar 

  101. Rubio, M.A.T., Pastar, I., Gaston, K.W., et al., An Adenosine-to-Inosine tRNA-Editing Enzyme that Can Perform C-to-U Deamination of DNA, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 7821–7826.

    PubMed  CAS  Google Scholar 

  102. Lobashev, M.E., Physiological Hypothesis of the Mutation Process, in Issledovaniya po genetike (Research in Genetics), Leningrad: Leningr. Gos. Univ., 1976, issue 6, pp. 3–15.

    Google Scholar 

  103. Khromov-Borisov, N.N., Physiological Theory of Mutation Process a Quarter of a Century Later, in Issledovaniya po genetike (Research in Genetics), Leningrad: Leningr. Gos. Univ., 1976, issue 6, pp. 16–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Lada.

Additional information

Original Russian Text © A.G. Lada, L.M. Iyer, I.B. Rogozin, L. Aravind, Yu.I. Pavlov, 2007, published in Genetika, 2007, Vol. 43, No. 10, pp. 1311–1327.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lada, A.G., Iyer, L.M., Rogozin, I.B. et al. Incarnation of classical pro- and eukaryotic mechanisms of mutagenesis in hypermutagenesis and immunity of vertebrates. Russ J Genet 43, 1093–1107 (2007). https://doi.org/10.1134/S1022795407100031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407100031

Keywords

Navigation