Skip to main content
Log in

Evolutionary significance of chromosome architecture for epigenetic control of eukaryote development and phylogeny

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The significance of the spatial organization of chromosomes in germline tissue as a positional system controlling segregation in oogenesis is considered. The history of the problem is reviewed. The author’s data on reorganization of chromosome structure in germline tissue considered in terms of systemic mutations are systematized. The notion of specific morphogenetic field based on chromosome structure, which controls ooplasmic segregation and subsequent developmental stages, is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Georgiev, G.P., Geny vysshikh organizmov i ikh ekspressiya (Genes of Higher Organisms and Their Expression), Moscow: Nauka, 1989.

    Google Scholar 

  2. Korochkin, L.I., Serov, O.L., and Maichenko, G.P., Genetika izofermentov (Genetics of Isozymes), Moscow: Nauka, 1977.

    Google Scholar 

  3. Gilbert, S.F., Developmental Biology, Sunderland: Sinauer, 1991.

    Google Scholar 

  4. Lewin, B., Genes, New York: Oxford Univ. Press, 1994.

    Google Scholar 

  5. Wolpert, L., Pattern Formation in Biological Development, Sci. Am., 1978, vol. 239, no. 4, pp. 154–164.

    Article  PubMed  CAS  Google Scholar 

  6. Tarlof, K.D., Hobbs, C., and Jones, H., A Structural Basis for Variegating Position Effects, Cell, 1984, vol. 37, pp. 869–878.

    Article  Google Scholar 

  7. Zhimulev, I.F., Geterokhromatin i effekt polozheniya gena (Heterochromatin and Position Effect Variegation), Novosibirsk: Nauka, 1993.

    Google Scholar 

  8. Zhimulev, I.F., Polytene Chromosomes, Heterochromatin and Position Effect Variegation, Adv. Genet., San Diego: Academic, 1998, vol. 37, pp. 1–566.

    Google Scholar 

  9. Zink, D., Cremer, T., Saffrich, R., et al., Structure and Dynamics of Human Interphase Chromosome Territories, Hum. Genet., 2001, vol. 10, pp. 241–251.

    Google Scholar 

  10. Boyle, S., Gilchrist, S., and Bridger, J.M., The Spatial Organization of Human Chromosomes within the Nuclei of Normal and Emerin-Mutant Cells, Hum. Mol. Genet., 2001, vol. 10, pp. 211–219.

    Article  PubMed  CAS  Google Scholar 

  11. Gvozdev, V.A., Spatial Organization of Chromosomes in the Cell Nucleus Determines the Gene Activity, Soros. Obrazovat. Zh., 2001, vol. 7, no. 2, pp. 4–10.

    Google Scholar 

  12. Serov, O.L., Gene and Chromosome Levels of Developmental Control, Inform. Vestn. VOGIS, 2003, nos. 24–25, pp. 2–8.

  13. Marshall, W.F., Gene Expression and Nuclear Architecture During Development and Differentiation, Mechanisms of Development, 2003, no. 120, pp. 1217–1230.

  14. Korochkin, L.I., Biologiya individual’nogo razvitiya (Biology of Individual Development), Moscow: Mosk. Gos. Univ., 2002.

    Google Scholar 

  15. Aizenshtadt, T.B., Tsitologiya oogeneza (Cytology of Oogenesis), Moscow: Nauka, 1984.

    Google Scholar 

  16. Dalcq, A., An Introduction to General Embryology, Oxford: Oxford Univ. Press, 1957.

    Google Scholar 

  17. Vandel, A., Evolution et embryologie, Rev. Sci., 1948, vol. 86, pp. 474–490.

    Google Scholar 

  18. Sved, I.A., Telomere Attachment of Chromosomes: Some Genetical and Cytological Consequences, Genetics, 1966, vol. 53, no. 4, pp. 747–756.

    PubMed  Google Scholar 

  19. Comings, D.E., The Rationale for an Ordered Arrangement of Chromatin in the Interphase Nucleus, Amer. J. Human. Genet., 1968, vol. 20, no. 5, pp. 440–460.

    CAS  Google Scholar 

  20. Prokofyeva-Belgovskaya, A.A., Replication Organization of Chromosomes, Tsitologiya, 1971, vol. 13, no. 6, pp. 679–691.

    Google Scholar 

  21. Shchapova, A.I., On the Karyotype Structure and Chromosome Distribution Pattern in the Interphase Nucleus, Tsitologiya, 1971, vol. 13, no. 9, pp. 1157–1164.

    Google Scholar 

  22. Kulichkov, V.A. and Zhimulev, I.F., Analysis of Spatial Organization of the Drosophila melanogaster Genomes Using the Data on Ectopic Conjugation of Polytene Chromosomes, Genetika (Moscow), 1976, vol. 12, no. 5, pp. 81–89.

    Google Scholar 

  23. Steffensen, D.M., Chromosome Architecture and the Interphase Nucleus: Data and Theory on the Mechanisms of Differentiation and Determination, Chromosomes Today, 1977, vol. 6, pp. 247–254.

    Google Scholar 

  24. Chiarelli, B. and Brogger, A., Superchromosomal Organisation and Its Cytogenetic Consequences in the Eukaryota, Genetica (The Hague), 1978, vol. 49, nos. 2–3, pp. 109–126.

    CAS  Google Scholar 

  25. Bennet, M.D., Nucleotypic Basis of the Spatial Ordering Chromosomes in Eukaryotes and the Implications of the Order for Genome Evolution Phenotypic Variation, Genome Evolution, Dover, G.A. and Flavell, R.B., Eds., London: Academic, 1982, pp. 239–262.

    Google Scholar 

  26. Taylor, I.H., The Arrangement of Chromosomes in the Mature Sperm of the Grasshopper, J. Cell Biol., 1964, vol. 21, no. 2, pp. 286–289.

    Article  PubMed  CAS  Google Scholar 

  27. Stegniy, V.N., Structural Reorganization of the Interphase Nucleus in Onto-and Phylogeny of Malaria Mosquito, Dokl. Akad. Nauk SSSR, 1979, vol. 249, no. 5, pp. 1231–1234.

    Google Scholar 

  28. Stegniy, V.N., Systemic Reorganization of the Polytene Chromosome Architectonics in Onto-and Phylogeny of Malaria Mosquito: II. Species-Specificity of Relationships between Chromosomes and Nuclear Envelope in Ovary Nurse Cells, Genetika (Moscow), 1987, vol. 23, no. 7, pp. 1194–1199.

    Google Scholar 

  29. Stegniy, V.N. and Vasserlauf, I.E., Positional Relationship of Polytene Chromosomes in Germline Tissue of Drosophila melanogaster, Genetika (Moscow), 1991, vol. 27, no. 7, pp. 1163–1168.

    Google Scholar 

  30. Vasserlauf, I.E. and Stegniy, V.N., Species-Specific Architectonics of Primary Polytene Chromosomes in Nurse Cells of Drosophila orena, D. yakuba, D. erecta, D. teissieri, Genetika (Moscow), 1992, vol. 28, no. 2, pp. 198–202.

    Google Scholar 

  31. Stegniy, V.N., Vasserlauf, I.E., and Anan’ina, T.V., Organization of Ovarian Polytene Chromosomes in 12 Species of the virilis Species Group of the Genus Drosophila (Sophophora), Rus. J. Genet., 1996, vol. 32, no. 6, p. 653–657.

    Google Scholar 

  32. Stegniy, V.N., Systemic Reorganization of the Polytene Chromosome Architectonics in Onto-and Phylogeny of Malaria Mosquito: I. Difference in Nuclear Structure between Somatic and Germline Tissues, Genetika (Moscow), 1987, vol. 23, no. 5, pp. 821–827.

    Google Scholar 

  33. Stegniy, V.N., Arkhitektonika genoma, sistemnye mutatsii i evolyutsiya (Genome Architectonics, Systemic Mutations and Evolution), Novosibirsk: Izd. Novosib. Univ., 1993, p. 110.

    Google Scholar 

  34. Stegniy, V.N., The Problem of Systemic Mutations, Rus. J. Genet., 1996, vol. 32, no. 1, p. 9–16.

    Google Scholar 

  35. Goldschmidt, R., The Material Basis of Evolution, New Haven: Vale Univ. Press, 1940, p. 436.

    Google Scholar 

  36. King, R., The Meiotic Behavior of the Drosophila Oocyte, Int. Rev. Cytol., 1970, vol. 28, pp. 125–168.

    Article  PubMed  CAS  Google Scholar 

  37. Edgar, B.A. and Schubiger, G., Parameters Controlling Transcriptional Activation During Early Drosophila Development, Cell, 1986, vol. 44, pp. 871–877.

    Article  PubMed  CAS  Google Scholar 

  38. Hochstrasser, M. and Sedat, J.W., Three-Dimensional Organization of Drosophila melanogaster Interphase Nuclei: I. Tissue-Specific Aspects of Polytene Nuclear Architecture, J. Cell Biol., 1987, vol. 104, pp. 1455–1470.

    Article  PubMed  CAS  Google Scholar 

  39. Manuelidis, L. and Borden, J., Reproducible Compartmentalization of Individual Chromosome Domains in Human CNS Cells Revealed by In situ Hybridization and Three-Dimensional Reconstruction, Chromosoma, 1988, vol. 96, pp. 397–410.

    Article  PubMed  CAS  Google Scholar 

  40. Zink, D. and Cremer, T., Chromosome Dynamics in Nuclei of Living Cells, Curr. Biol., 1998, vol. 8, pp. R321–R324.

    Article  PubMed  CAS  Google Scholar 

  41. Wilkie, G.S., Shermoen, A.W., O’Farrell, P.H., and Davis, I., Transcribed Genes Are Localized According to Chromosomal Position within Polarized Drosophila Embryonic Nuclei, Curr. Biol., 1999, vol. 9, pp. 1263–1266.

    Article  PubMed  CAS  Google Scholar 

  42. Cremer, M., von Hase, J., Volm, T., et al., Non-Random Radial Higher-Order Chromatin Arrangements in Nuclei of Diploid Human Cells, Chromosome Res., 2001, vol. 9, pp. 541–567.

    Article  PubMed  CAS  Google Scholar 

  43. Grunstein, M., Yeast Heterochromatin Regulation of Its Assembly and Inheritance by Histones, Cell, 1998, vol. 93, pp. 325–328.

    Article  PubMed  CAS  Google Scholar 

  44. Andrulis, E.D., Neiman, A.M., Zappulla, D.C., and Sternglanz, R., Perinuclear Localization of Chromatin Facilitates Transcriptional Silencing, Nature, 1998, vol. 394, pp. 592–595.

    Article  PubMed  CAS  Google Scholar 

  45. Sass, G.L. and Henikoff, S., Pairing-Dependent Mislocalization of a Drosophila brown Gene Reporter to a Heterochromatic Environment, Genetics, 1999, vol. 152, pp. 595–604.

    PubMed  CAS  Google Scholar 

  46. Cockell, M. and Gasser, S.V., Nuclear Compartments and Gene Regulation, Curr. Opin. Genet. Dev., 1999, vol. 9, pp. 199–205.

    Article  PubMed  CAS  Google Scholar 

  47. Gerasimova, T.I., Byrd, K., and Corces, V.G., A Chromatin Insulator Determines the Nuclear Localization of DNA, Mol. Cell, 2000, vol. 6, pp. 1025–1035.

    Article  PubMed  CAS  Google Scholar 

  48. Guillemin, K., Williams, T., and Krasnow, M.A., A Nuclear Lamin Is Required for Cytoplasmic Organization and Egg Polarity in Drosophila, Nat. Cell Biol., 2001, vol. 3, pp. 848–851.

    Article  PubMed  CAS  Google Scholar 

  49. Nili, E., Cojocaru, G.S., Kalma, Y., et al., Nuclear Membrane Protein LAP2beta Mediates Transcriptional Repression Alone and Together with Its Binding Partner GCL (Germ-Cell-Less), J. Cell Sci., 2001, vol. 114, pp. 3297–3307.

    PubMed  CAS  Google Scholar 

  50. Gasser, S.M., Visualizing Chromatin Dynamics in Interphase Nuclei, Science, 2002, vol. 296, pp. 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  51. Li, Y., Danzer, J.R., Alvarez, P., et al., Effects of Tethering HP1 to Euchromatic Regions of the Drosophila Genome, Development, 2003, vol. 130, pp. 1817–1824.

    Article  PubMed  CAS  Google Scholar 

  52. Reugels, A.M., Kurek, R., Lammermann, U., and Bunemann, H., Mega-Introns in the Dynein Gene DhDhc7(Y) on the Heterochromatic Y Chromosome Give Rise to the Giant Threads Loops in Primary Spermatocytes of Drosophila hydei, Genetics, 2000, vol. 154, pp. 759–769.

    PubMed  CAS  Google Scholar 

  53. Stegniy, V.N. and Sharakhova, M.V., Systemic Reorganization of the Polytene Chromosome Architectonics in Ontogeny and Phylogeny of Malaria Mosquito, Genetika (Moscow), 1991, vol. 27, no. 5, pp. 828–835.

    Google Scholar 

  54. Hochstrasser, M., Mathog, D., Gruenbaum, Y., et al., Spatial Organization of Chromosomes in the Salivary Gland Nuclei of Drosophila melanogaster, J. Cell Biol., 1986, vol. 102, pp. 112–123.

    Article  PubMed  CAS  Google Scholar 

  55. Mal’ceva, N.I. and Zhimulev, I.F., Extent of Politeny in the Pericentric Heterochromatin of Polytene Chromosomes of Pseudonurse Cell of otu (ovarian tumor) Mutants of Drosophila melanogaster, Mol. Gen. Genet., 1993, vol. 240, pp. 273–276.

    Article  PubMed  CAS  Google Scholar 

  56. Koryakov, D.E. and Zhimulev, I.F., Partial Polytenization of Heterochromatin of the Second Chromosome in Pseudonurse Cell from otu Mutant Oocytes Drosophila melanogaster, Dokl. Akad. Nauk, 1995, vol. 344, pp. 568–571.

    CAS  Google Scholar 

  57. Sharakhov, I.V., Baricheva, E.M., Bogachev, S.S., et al., A Specific DNA Seguence Is Located in the Loci of Proximal β-Heterochromatin, Which Are Always Associated with the Nuclear Envelope of Pseudonurse Cells in Drosophila melanogaster otu 11 Mutant Strain, J. Cell Biochem., 1995, Suppl. 21B, p. 131.

  58. Sharakhov, I.V., Vasserlauf, I.E., and Stegniy, V.N., Features of Polytene Chromosome Attachment to the Nuclear Envelore of Ovarian Pseudonurse Cells in Drosophila melanogaster, Rus. J. Genet., 1997, vol. 33, no. 2, pp. 189–195.

    CAS  Google Scholar 

  59. Grushko, O.G., Sharakhova, M.V., Shevchenko, A.I., et al., Characterization and Comparative Analysis of DNA from the Pericentric heterochromatin of Chromosome 2 of Anopheles atroparvus V. Tiel (Culicidae, Diptera), Rus. J. Genet., 2004, vol. 40, no. 10, pp. 1325–1335.

    Article  CAS  Google Scholar 

  60. MacDonald, P.M., Bicoid mRNA Localization Signal: Phylogenetic Conservation of Function and RNA Secondary Structure, Development, vol. 110, pp. 161–171.

  61. Svetlov, P.G., On Cholistic and Elementaristic Methods in Embryology, Arkh. Anat. Gistol. Embriol., 1964, vol. 46, no. 4, pp. 3–26.

    PubMed  CAS  Google Scholar 

  62. Belousov, L.V., The Origins, Development and Perspectives of the Biological Field Theory, in Fizicheskie i khimicheskie osnovy zhiznennykh yavlenii (Physical and Chemical Basis of Life Phenomena), Moscow: Int. Istor. Estestv. Tekhn., 1963, pp. 59–117.

    Google Scholar 

  63. Gurvich, A.G., Teoriya biologicheskogo polya (Biological Field Theory), Moscow: Sov. Nauka, 1944, p. 156.

    Google Scholar 

  64. Kol’tsov, N.K., Organizatsiya kletki (Cell Organization), Moscow, 1936.

  65. Woodruff, R.I. and Telfer, W.H., Polarized Intercellular Bridges in Ovarian Follicles of the Cecropia Moth, J. Cell Biol., 1973, vol. 58, no. 1, pp. 172–192.

    Article  PubMed  CAS  Google Scholar 

  66. Stegniy, V.N., Structural Reorganization of the Interphase Nuclei As a Possible Determinant of Embryogeny, VI Vsesoyuznoe soveshchanie embriologov (6th All-Union Conf. of the Embryologists), Moscow: Nauka, 1981.

    Google Scholar 

  67. Shakhbazov, V.G., On the Role of Nucleus and Nucleolus in the Bioelektrogenesis Process under Normal Circumstances and under Extreme Influences, in Metabolizm kletochnogo yadra i yaderno-tsitoplazmaticheskie otnosheniya (Cell Nucleus Metabolism and Nucleus-Cytoplasm Relationships), Kiev: Naukova Dumka, 1970, pp. 40–43.

    Google Scholar 

  68. Zubarev, T.N., Rogatykh, N.P., and Yasinovskii, V.G., Bioelectric Characteristics of Asetabularia mediterranea on Different Stages of Morphogenesis, Fiziol. Rastenii, 1974, vol. 21, no. 3, pp. 529–537.

    Google Scholar 

  69. De Boni, U., Chromatin Motion in Interphase Nuclei, Its Modulation and Its Potential Role in Gene Expression, Anticancer Res., 1988, vol. 8, no. 5A, pp. 885–898.

    PubMed  Google Scholar 

  70. Clark, D.J. and Kimura, T., Electrostatic Mechanism of Chromatin Folding, J. Mol. Biol., 1990, vol. 211, no. 4, pp. 883–896.

    Article  PubMed  CAS  Google Scholar 

  71. Shakhbazov, V.G., New Conception on the Role of Temperature in the Formation of Bioelectric Potential and the Genetic Functions of the Cell Nucleus, Dokl. Akad. Nauk SSSR, 1989, vol. 308, no. 4, pp. 994–996.

    PubMed  CAS  Google Scholar 

  72. Goodman, R. and Henderson, A.S., Stimulation of RNA Synthesis in the Salivary Gland Cell of Sciara coprophila by an Electromagnetic Signal Used for Treatment of Skeletal in Horses, J. Bioelectricity, 1987, vol. 6, no. 1, pp. 37–46.

    CAS  Google Scholar 

  73. Melkumyan, V.G., Rogatykh, N.P., and Zubarev, T.N., On the Informational Role of Action Potential in the Cells of Acetobularia, Dokl. Akad. Nauk SSSR, 1975, vol. 224, no. 5, pp. 1223–1226.

    Google Scholar 

  74. Devyatkov, N.D., Golant, M.B., and Betskii, O.V., Millimetrovye volny i ikh rol’ v protsessakh zhiznedeyatel’nosti (Millimeter Waves and Their Role in Life Activity), Moscow: Radio i Svyaz’, 1991, p. 168.

    Google Scholar 

  75. Kotov, B.S. and Gavinskii, Yu.B., Method of Preplant Seed Treatment and the Apparatus for Its Realization, RF Patent no. 2108 028, Rospatent, Gosreestr Izobr., 1998, p. 10.

  76. Stegniy, V.N., Bondar’, L.M., Mel’nikova, N.N., et al., Influence of Microwave Radiation on the Genetic Apparatus of Plant Cell, Tsitologiya, 2003, no. 9, pp. 474–475.

  77. Bondar’, L.M., Chastokolenko, L.V., Emer, N.R., et al., Influence of BIO-Microwave Frequency Stimulator on Plant Cytogenetic Characteristics, Vestn. Tomsk. Gos. Univ., 2004, suppl., no. 10, pp. 3–7.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.N. Stegniy, 2006, published in Genetika, 2006, Vol. 42, No. 9, pp. 1215–1224.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegniy, V.N. Evolutionary significance of chromosome architecture for epigenetic control of eukaryote development and phylogeny. Russ J Genet 42, 1011–1018 (2006). https://doi.org/10.1134/S1022795406090079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406090079

Keywords

Navigation