Skip to main content
Log in

Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) play key roles in plants and are regulated by several ROS-scavenging enzymes. Ascorbate peroxidase (APX), which catalyzes the reduction of hydrogen peroxide to water, a vital part of ROS formation, plays a significant role in higher plants. In this study, a cytosolic APX gene from Populus tomentosa, named PcAPX, was identified and characterized. Recombinant PcAPX had a calculated mass of 33.24 kD and showed high activity towards ascorbic acid (ASA) and hydrogen peroxide (H2O2). Real-time PCR analysis showed that APX mRNA expression levels were higher in leaves than roots or stems of P. tomentosa. Compared with wild-type, transgenic tobacco plants overexpressing PcAPX showed no significant difference in morphology under normal conditions. However, the transgenic plants were more resistant to drought, salt and oxidative stress conditions, as shown by decreased levels of malondialdehyde and increased levels of chlorophyll. Moreover, decreased H2O2 levels, increased ASA consumption, an increase in the NADP to NADPH ratio, and higher APX activity in the transgenic plants suggested an increased ability to eliminate ROS. These data suggest that PcAPX overexpression in transgenic tobacco plants can enhance tolerance to drought, salt and oxidative stress. Therefore, APX has a crucial role in abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

ASA:

ascorbic acid

CAT:

catalase

MDASA:

monodehydroascorbate

RWC:

relative water content

SOD:

superoxide dismutase

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

References

  1. Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., and Mittler, R., Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses, Plant Physiol., 2007, vol. 144, pp. 1777–1785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davletova, S., Rizhsky, L., Liang, H.J., Zhong, S.Q., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R., Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis, Plant Cell, 2005, vol. 17, pp. 268–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, Y.J., Hai, R.L., Du, X.H., Jiang, X.N., and Lu, H., Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance, Plant Breed., 2009, vol. 128, pp. 404–410.

    Article  CAS  Google Scholar 

  4. Yang, F., Wang, Y., and Miao, L.F., Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes, Physiol. Plant., 2010, vol. 139, pp. 388–400.

    CAS  PubMed  Google Scholar 

  5. Mishra, P., Bhoomika, K., and Dubey, R.S., Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings, Protoplasma, 2013, vol. 250, pp. 3–19.

    Article  CAS  PubMed  Google Scholar 

  6. Genisel, M., Turk, H., and Erdal, S., Exogenous progesterone application protects chickpea seedlings against chilling-induced oxidative stress, Acta Physiol. Plant., 2013, vol. 35, pp. 241–251.

    Article  CAS  Google Scholar 

  7. Silva, E.N., Vieira, S.A., Ribeiro, R.V., Ponte, L.F.A., Ferreira-Silva, S.L., and Silveira, J.A.G., Contrasting physiological responses of Jatropha curcas plants to single and combined stresses of salinity and heat, J. Plant Growth Regul., 2013, vol. 32, pp. 159–169.

    Article  CAS  Google Scholar 

  8. Liu, P.Q., Sun, F., Gao, R., and Dong, H.S., RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity, Plant Mol. Biol., 2012, vol. 79, pp. 609–622.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, L.Y., Zhang, Q.Y., Wang, F., Meng, X., and Meng, Q.W., Ascorbate plays a key role in alleviating low temperature-induced oxidative stress in Arabidopsis, Photosynthetica, 2012, vol. 50, pp. 602–612.

    Article  CAS  Google Scholar 

  10. Ishikawa, T. and Shigeoka, S., Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms, Biosci. Biotech. Biochem., 2008, vol. 72, pp. 1143–1154.

    Article  CAS  Google Scholar 

  11. Hoque, M.A., Uraji, M., Torii, A., Banu, M.N., Mori, I.C., Nakamura, Y., and Murata, Y., Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum, J. Biochem. Mol. Toxic., 2012, vol. 26, pp. 315–321.

    Article  CAS  Google Scholar 

  12. Mittler, R. and Zilinskas, B.A., Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium, Anal. Biochem., 1993, vol. 212, pp. 540–546.

    Article  CAS  PubMed  Google Scholar 

  13. Webb, R.P. and Allen, R.D., Isolation and characterization of a cDNA for spinach cytosolic ascorbate peroxidase, Plant Physiol., 1995, vol. 108, pp. 1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dalton, D.A., Diaz del Castillo, L., Kahn, M.L., Joyner, S.L., and Chatfield, J.M., Heterologous expression and characterization of soybean cytosolic ascorbate peroxidase, Arch. Biochem. Biophys., 1996, vol. 328, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Park, S.Y., Ryu, S.H., Jang, I.C., Kwon, S.Y., Kim, J.G., and Kwak, S.S., Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweet potato and its expression in response to stress, Mol. Genet. Genomics, 2004, vol. 271, pp. 339–346.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Z.G., Zhang, Q., Wu, J.X., Zheng, X., Zheng, S., Sun, X.H., Qiu, Q.S., and Lu, T.G., Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses, PLoS One, 2013, vol. 8, pp. e57472.

    Article  Google Scholar 

  17. Bonifacio, A., Martins, M.O., Ribeiro, C.W., Fontenele, A.V., Carvalho, F.E.L., Margis-Pinheiro, M., and Silveira, J.A.G., Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress, Plant Cell Environ., 2011, vol. 34, pp. 1705–1722.

    Article  CAS  PubMed  Google Scholar 

  18. Lu, H., Han, R.L., and Jiang, X.N., Heterologous expression and characterization of a proxidomal ascorbate peroxidase from Populus tomentosa, Mol. Biol. Rep., 2009, vol. 36, pp. 21–27.

    Article  PubMed  Google Scholar 

  19. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horsch, R.B., Fry, J.E., Eichlotz, D., Rogers, S.G., and Frakey, R.T., A simple and general method for transferring genes into plants, Science, 1985, vol. 227, pp. 1229–1231.

    Article  CAS  Google Scholar 

  21. Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 2001.

    Google Scholar 

  22. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  23. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method, Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  24. Sarowar, S., Kim, E.N., Kim, Y.J., Ok, S.H., Kim, K.D., Hwang, B.K., and Shin, J.S., Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens, Plant Sci., 2005, vol. 169, pp. 55–63.

    Article  CAS  Google Scholar 

  25. Hu, X.L., Lu, M.H., Li, C.H., Liu, T.X., Wang, W., Wu, J.Y., Tai, F.J., Li, X., and Zhang, J., Differential expression of proteins in maize roots in response to abscisic acid and drought, Acta Physiol. Plant., 2011, vol. 33, pp. 2437–2446.

    Article  CAS  Google Scholar 

  26. Diaz-Vivancos, P., Faize, M., Barba-Espin, G., Faize, L., and Petri, C., Hernández, J.A., Burgos, L., Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums, Plant Biotechnol. J., 2013, vol. 11, pp. 976–985.

    Article  CAS  PubMed  Google Scholar 

  27. D’Arcy-Lameta, A., Ferrari-Iliou, R., Contour-Ansel, D., Pham-Thi, A.T., and Zuily-Fodil, Y., Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves, Ann. Bot., 2006, vol. 97, pp. 133–140.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  29. Wilson, P.B., Estavillo, G.M., Field, K.J., Pornsiriwong, W., Carroll, A.J., Howell, K.A., Woo, N.S., Lake, J.A., Smith, S.M., Millar, A.H., von Caemmerer, S., and Pogson, B.J., The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis, Plant J., 2009, vol. 58, pp. 299–317.

    Article  CAS  PubMed  Google Scholar 

  30. Lu, Z.Q., Liu, D.L., and Liu, S.K., Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis, Plant Cell Rep., 2007, vol. 26, pp. 1909–1917.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Li.

Additional information

The article is published in the original.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Du, XH., Li, LH. et al. Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants. Russ J Plant Physiol 64, 224–234 (2017). https://doi.org/10.1134/S1021443717020029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717020029

Keywords

Navigation