Skip to main content
Log in

Different responses of two ecotypes of C3–C4 xero-halophyte Bassia sedoides to osmotic and ionic factors of salt stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of low and moderate salinity (100 and 200 mM NaCl, respectively) and iso-osmotic stress generated by polyethylene glycol PEG (1) (–0.3 MPa) and PEG (2) (–0.6 MPa) on maximum quantum yield of photosystem II (PSII), growth, photosynthesis, transpiration, dark respiration, water use efficiency (WUE), water content, chlorophyll, proline, Na+ and K+ concentrations were investigated in shoots of two ecotypes С3–С4 xero-halophyte Bassia sedoides (Pall.) Aschers. Plants were grown from seeds of two Southern Urals populations (Makan and Podolsk) differing in their bioproductivity. Aboveground biomass of the Makan plants was approximately 10-fold higher than that of the Podolsk ecotype. The plants of both ecotypes were sensitive to water deficit. They showed similar decrease in biomass, water content, net photosynthesis and transpiration intensity under both low and moderate osmotic stress (PEG). However, the content of сhlorophyll and free proline in shoots of the Podolsk plants increased under moderate osmotic stress (PEG(2)). Under salinity the differences between transpiration, F v/F m, WUE, water content, chlorophyll and proline concentrations in shoots of two ecotypes were no found. But, the Podolsk plants showed decrease in the growth parameters (1.5-fold), increase in the dark respiration intensity (2-fold) and the Na+/K+ ratio (1.2-fold) under moderate salinity (200 mM NaCl). Thus, the reduction of bioproductivity of the Podolsk ecotype under salinity was the result of ionic rather than osmotic factor of salinity. In the Podolsk plants the additional transpiration costs and consumption of assimilates (correspondingly) increased with the toxic sodium ion accumulation under salinity. This led to decrease in the growth parameters. Thus, two B. sedoides ecotypes have different adaptive strategies of tolerance to the ionic factor of salt stress at the level of the physiological processes associated with the dark CO2 gas exchange. Moreover, in less tolerant and productive Podolsk ecotype the increase in proline content in shoots characterized comparatively low adaptation to osmotic factor, and the increase in dark respiration and the Na+/K+ ratio pointed to relatively low resistance to ion factor of salinity as compared with the Makan ecotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F v/F m :

maximum quantum yield of PSII

F 0 :

minimal fluorescence from dark-adapted shoots

F m :

maximal fluorescence from dark-adapted shoots

PSI and PSII:

photosystem I and II.

References

  1. Eshghizaden, H.R., Kafi, M., and Nezami, A., The mechanisms of salinity tolerance in the xero-halophyte blue panicgrass (Panicum antidotale Retz.), Not. Sci. Biol., 2012, vol. 4, pp. 59–64.

    Google Scholar 

  2. Aslam, R. Bostan, N., Nabghae Amen Maria, M., and Safdar, W., A critical review on halophytes: salt tolerant plants, J. Med. Plants Res., 2011, vol. 5, pp. 7108–7118.

    CAS  Google Scholar 

  3. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  4. Ashraf, M. and Harris, P.J.C., Photosynthesis under stressful environments: an overview, Photosynthetica, 2013, vol. 51, pp. 163–190.

    Article  CAS  Google Scholar 

  5. Chaves, M.M., Flexas, J., and Pinheiro, C., Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Ann. Bot., 2009, vol. 103, pp. 551–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geissle, N., Hussin, S., and Koyro, H.W., Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L., Environ. Exp. Bot., 2009, vol. 65, pp. 220–231.

    Article  Google Scholar 

  7. Duarte, B., Sleimi, N., and Caçador, I., Biophysical and biochemical constraints imposed by salt stress: learning from halophytes, Front. Plant Sci., 2014, vol. 5, p. 746.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ashraf, M. and Harris, P.J.C., Potential biochemical indicators of salinity tolerance in plants, Plant Sci., 2004, vol. 166, pp. 3–16.

    Article  CAS  Google Scholar 

  9. Parida, A.K., Das, A.B., and Mittra, B., Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora, Trees–Struct. Funct., 2004, vol. 18, pp. 167–174.

    Article  CAS  Google Scholar 

  10. Rivelli, A.R., Lovelli, S., and Perniola, M., Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus), Funct. Plant Biol., 2002, vol. 29, pp. 1405–1415.

    Article  CAS  Google Scholar 

  11. Jacoby, R.P., Taylor, N.L., and Millar, A.H., The role of mitochondrial respiration in salinity tolerance, Trends Plant Sci., 2011, vol. 16, pp. 614–623.

    Article  CAS  PubMed  Google Scholar 

  12. Nunes-Nesi, A., Araújo, W., and Fernie, A.R., Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis, Plant Physiol., 2011, vol. 155, pp. 101–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rakhmankulova, Z.F., The relationship of photosynthesis and respiration of the whole plant under normal and stressful conditions, Zh. Obshch. Biol., 2002, vol. 63, no. 3, pp. 44–53.

    Google Scholar 

  14. Thornley, J.H.M., Plant growth and respiration re-visited: maintenance respiration defined–it is an emergent property of, not a separate process within, the system–and why the respiration: photosynthesis ratio is conservative, Ann. Bot., 2011, vol. 108, pp. 365–1380. doi 10.1093/aob/mcr238

    Article  Google Scholar 

  15. Flexas, J., Bota, J., Galmés, J., Medrano, H., and Ribas-Carbo, M., Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress, Physiol. Plant., 2006, vol. 127, pp. 343–352.

    Article  CAS  Google Scholar 

  16. Gupta, B. and Huang, B., Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization, Int. J. Genomics, 2014, pp. 1–18. doi 10.1155/2014/701596

    Google Scholar 

  17. Ma, L., Zhang, H., Sun, L., Jiao, Y., Zhang, G., Miao, C., and Hao, F., NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress, J. Exp. Bot., 2012, vol. 63, pp. 305–317.

    Article  CAS  PubMed  Google Scholar 

  18. Robinson, M., Very, A., Sanders, D., and Mansfield, T., How can stomata contribute to salt tolerance? Ann. Bot., 1997, vol. 80, pp. 387–393.

    Article  CAS  Google Scholar 

  19. Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M., and Ben Abdullah, F., Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree, J. Agric. Food Chem., 2010, vol. 58, pp. 4216–4222.

    Article  PubMed  Google Scholar 

  20. Ripley, B., Frole, K., and Gilbert, M., Differences in drought sensitivities and photosynthetic limitation between co-occurring C3 and C4 (NADP-ME) Panicoid grasses, Ann. Bot., 2010, vol. 105, pp. 495–503.

    Article  Google Scholar 

  21. Abdel-Latif, A., Phosphoenolpyruvate carboxylase activity of wheat and maize seedlings subjected to salt stress, Aust. J. Basic Appl. Sci., 2008, vol. 2, pp. 37–41.

    CAS  Google Scholar 

  22. Ueno, O., Structural and biochemical characterization of the C3-C4 intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco, J. Exp. Bot., 2011, vol. 62, pp. 5347–5355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sage, R.F., Sage, T.L., and Kocacinar, F., Photorespiration and the evolution of C4 photosynthesis, Annu. Rev. Plant Biol., 2012, vol. 63, pp. 19–47.

    Article  CAS  PubMed  Google Scholar 

  24. Shuyskaya, E.V., Rakhmankulova, Z.F., Biktimerova, G.Ya., Sherbakov, A.V., Fedyaev, V.V., Suyunukov, Ya.T., and Usmanov, I.Yu., Eco-physiological analysis of Chenopodiaceae species in saline soils of the Southern Urals, Rastit. Resur., 2014, vol. 50, pp. 614–626.

    Google Scholar 

  25. Radyukina, N.L., Ivanov, Yu.V., and Shevyakova, N.I., Methods for evaluating the content of reactive oxygen species, low molecular weight antioxidants and the activity of main antioxidant enzyme, in Molekulyarnogeneticheskie i biokhimicheskie metody v sovremennoi biologii rastenii (Molecular-Genetic and Biochemical Methods in Modern Plant Biology), Kuznetsov, Vl.V., Kuznetsov, V.V., and Romanov, G.A., Eds., Moscow: Binom, 2011, pp. 347–365.

    Google Scholar 

  26. Pärnik, T.R., Keerberg, O.F., and Yurisma, E.Ya., A high-speed exposure cuvette for the study of photosynthesis with 14CO2, Sov. Plant Physiol., 1987, vol. 34, pp. 837–845.

    Google Scholar 

  27. Laisk, A.H., Kinetika fotosinteza i fotodykhaniya C3-rastenii (Kinetics of Photosynthesis and Photorespiration of C3 Plants), Moscow: Nauka, 1977.

    Google Scholar 

  28. Voronin, P.Yu., Experimental installation for measurements of chlorophyll fluorescence, CO2 exchange, and transpiration of a detached leaf, Russ. J. Plant Physiol., 2014, vol. 61, pp. 269–273.

    Article  CAS  Google Scholar 

  29. Szabados, L. and Savoureacute, A., Proline: a multifunctional amino acid, Trends Plant Sci., 2010, vol. 15, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  30. Hare, P. and Cress, W.A., Metabolic implications of stress-induced proline accumulation in plants, Plant Growth Regul., 1997, vol. 21, pp. 79–102.

    Article  CAS  Google Scholar 

  31. Razzaghi, F., Jacobsen, S.-E., Jensen, C.R., and Andersen, M.N., Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought–mechanisms of tolerance, Funct. Plant Biol., 2015, vol. 42, pp. 136–148.

    Article  CAS  Google Scholar 

  32. Bartoli, C.G., Gómez, F., Gergoff, G., Guiamet, J.J., and Puntarulo, S., Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions, J. Exp. Bot., 2005, vol. 56, pp. 1269–1276.

    Article  CAS  PubMed  Google Scholar 

  33. Lambers, H., Chapin, F.S., and Pons, T.L., Plant Physiological Ecology, New York: Springer-Verlag, 2008.

    Book  Google Scholar 

  34. Widodo, J.J., Patterson, J.H., Newbigin, E., Tester, M., Bacic, A., and Roessner, U., Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance, J. Exp. Bot., 2009, vol. 60, pp. 4089–4103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Balnokin, Yu.V., Ionnyi gomeostaz i soleustoichivost' rastenii, 70-ε Timiryazevskoe chteniye (Ion Homeostasis and Salinity Tolerance of Plants, the 70th Timiryazev Lecture), Moscow: Nauka, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. F. Rakhmankulova.

Additional information

Published in Russian in Fiziologiya Rastenii, 2016, Vol. 63, No. 3, pp. 372–381.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmankulova, Z.F., Shuyskaya, E.V., Suyundukov, Y.T. et al. Different responses of two ecotypes of C3–C4 xero-halophyte Bassia sedoides to osmotic and ionic factors of salt stress. Russ J Plant Physiol 63, 349–357 (2016). https://doi.org/10.1134/S1021443716030122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716030122

Keywords

Navigation