Skip to main content
Log in

Specific roles of AtEXPA1 in plant growth and stress adaptation

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Expansins are a group of proteins that appear to be involved in the disruption of the noncovalent bonds within the cell wall. The distinctly expressed expansin genes can independently regulate cell expansion in place and time, and their diverse expression patterns suggest their distinct effects on plant growth. In this paper, we analyzed the effects of excessive expansin AtEXPA1 on plant growth and plant adaptation to NaCl and ABA stresses by overexpressing its gene in Arabidopsis plants. The AtEXPA1 overexpressing plants exhibited stunted shoot growth, mainly during the early phase of vegetative growth, and the growth of transgenic seedlings was also impaired. Comparing with their growth under normal growth condition, the AtEXPA1 overexpressing plants showed alleviated impairment under salt and ABA stress conditions. These results suggest that, although excessive AtEXPA1 could disturb cell wall organization and lead to growth reduction, it inversely helped enhancing cell wall organization under stress conditions and thus helped plant better to adapt to adverse environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zenoni, S., Reale, L., Tornielli, G.B., Lanfaloni, L., Porceddu, A., Ferrarini, A., Moretti, C., Zamboni, A., Speghini, A., Ferranti, F., and Pezzotti, M., Downregulation of the Petunia hybrida α-Expansin Gene PhEXP1 Reduces the Amount of Crystalline Cellulose in Cell Walls and Leads to Phenotypic Changes in Petal Limbs, Plant Cell, 2004, vol. 16, pp. 295–308.

    Article  CAS  PubMed  Google Scholar 

  2. Vogler, H., Caderas, D., Mandel, T., and Kuhlemeier, C., Domains of Expansin Gene Expression Define Growth Regions in the Shoot Apex of Tomato, Plant Mol. Biol., 2003, vol. 53, pp. 267–272.

    Article  CAS  PubMed  Google Scholar 

  3. Shin, J.H., Jeong, D.H., Park, M.C., and An, G., Characterization and Transcriptional Expression of the α-Expansin Gene Family in Rice, Mol. Cell, 2005, vol. 20, pp. 210–218.

    CAS  Google Scholar 

  4. McQueen-Mason, S.J., Durachko, D.M., and Cosgrove, D.J., Two Endogenous Proteins That Induce Cell Wall Extension in Plants, Plant Cell, 1992, vol. 4, pp. 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  5. Li, Z.C., Durachko, D.M., and Cosgrove, D.J., An Oat Coleoptile Wall Protein That Induces Wall Extension in vitro and That Is Antigenically Related to a Similar Protein from Cucumber Hypocotyls, Planta, 1993, vol. 191, pp. 349–356.

    Article  CAS  Google Scholar 

  6. Lee, Y. and Kende, H., Expression of β-Expansins Is Correlated with Elongation of Internodes in Deepwater Rice, Plant Physiol., 2001, vol. 127, pp. 645–654.

    Article  CAS  PubMed  Google Scholar 

  7. Ookawara, R., Satoh, S., Yoshioka, T., and Ishizawa, K., Expression of α-Expansin and Xyloglucan Endotransglucosylase/Hydrolase Genes Associated with Shoot Elongation Enhanced by Anoxia, Ethylene and Carbon Dioxide in Arrowhead (Sagittaria pygmaea Miq.) Tubers, Ann. Bot., 2005, vol. 96, pp. 693–702.

    Article  CAS  PubMed  Google Scholar 

  8. Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C., and Fleming, A., Local Expression of Expansin Induces the Entire Process of Leaf Development and Modifies Leaf Shape, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 11 812–11 817.

    Article  CAS  Google Scholar 

  9. Kam, M.J., Yun, H.S., Kaufman, P.B., Chang, S.C., and Kim, S.M., Two Expansins, EXPB1 and EXPB2, Are Correlated with the Growth and Development of Maize Roots, J. Plant Biol., 2005, vol. 48, pp. 304–310.

    Article  CAS  Google Scholar 

  10. Brummell, D.A., Harpster, M.H., and Dunsmuir, P., Differential Expression of Expansin Gene Family Members during Growth and Ripening of Tomato Fruit, Plant Mol. Biol., 1999, vol. 39, pp. 161–169.

    Article  CAS  PubMed  Google Scholar 

  11. Cho, H.T. and Cosgrove, D.J., Altered Expression of Expansin Modulates Leaf Growth and Pedicel Abscission in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 9783–9788.

    Article  CAS  PubMed  Google Scholar 

  12. Rochange, S.F., Wenzel, C.L., and McQueenMason, S.J., Impaired Growth in Transgenic Plants Over-Expressing an Expansin Isoform, Plant Mol. Biol., 2001, vol. 46, pp. 581–589.

    Article  CAS  PubMed  Google Scholar 

  13. Choi, D.S., Lee, Y., Cho, H.T., and Kende, H., Regulation of Expansin Gene Expression Affects Growth and Development in Transgenic Rice Plants, Plant Cell, 2003, vol. 15, pp. 1386–1398.

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y., Darley, C.P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S.L., and McQueen-Mason, S.J., Plant Expansins Are a Complex Multigene Family with an Ancient Evolutionary Origin, Plant Physiol., 2002, vol. 128, pp. 854–864.

    Article  CAS  PubMed  Google Scholar 

  15. Cosgrove, D.J., New Genes and New Biological Roles for Expansins, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 73–78.

    Article  CAS  PubMed  Google Scholar 

  16. Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., and Yamaguchi, S., Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination, Plant Cell, 2003, vol. 15, pp. 1591–1604.

    Article  CAS  PubMed  Google Scholar 

  17. Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S., Activation of Gibberellin Biosynthesis and Response Pathways by Low Temperature during Imbibition of Arabidopsis thaliana Seeds, Plant Cell, 2004, vol. 16, pp. 367–378.

    Article  CAS  PubMed  Google Scholar 

  18. Wieczorek, K., Golecki, B., Gerdes, L., Heinen, P., Szakasits, D., Durachko, D.M., Cosgrove, D.J., Kreil, D.P., Puzio, P.S., Bohlmann, H., and Grundler, F.M.W., Expansins Are Involved in the Formation of Nematode-Induced Syncytia in Roots of Arabidopsis thaliana, Plant J., 2006, vol. 48, pp. 98–112.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, P., Chen, S., and Wang, X.C., Arabidopsis Expansin AtEXP1 Involved in the Regulation of Stomatal Movement, Acta Agron. Sinica, 2006, vol. 32, pp. 562–567.

    CAS  Google Scholar 

  20. Lee, Y., Choi, D., and Kende, H., Expansins: EverExpanding Numbers and Functions, Curr. Opin. Plant Biol., 2001, vol. 4, pp. 527–532.

    Article  CAS  PubMed  Google Scholar 

  21. Schipper, O., Schaefer, D., Reski, R., and Fleming, A., Expansins in the Bryophyte physcomitrella Patens, Plant Mol. Biol., 2002, vol. 50, pp. 789–802.

    Article  CAS  PubMed  Google Scholar 

  22. Hua, W., Zhang, L., Liang, S., Jones, R.L., and Lu, Y.T., A Tobacco Calcium/Calmodulin-Binding Protein Kinase Functions as a Negative Regulator of Flowering, J. Biol. Chem., 2004, vol. 279, pp. 31 483–31 494.

    CAS  Google Scholar 

  23. Clough, S.J. and Bent, A.F., Floral Dip: A Simplified Method for Agrobacterium-Mediated Transformation of Arabidopsis thaliana, Plant J., 1998, vol. 16, pp. 735–743.

    Article  CAS  PubMed  Google Scholar 

  24. Gao, X., Ren, F., and Lu, Y.T., The Arabidopsis Mutant stg1 Identifies a Function for TBP-Associated Factor 10 in Plant Osmotic Stress Adaptation, Plant Cell Physiol., 2006, vol. 47, pp. 1285–1294.

    Article  CAS  PubMed  Google Scholar 

  25. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue Culture, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  26. Hetherington, A.M. and Quatrano, R.S., Mechanisms of Action of Abscisic Acid at the Cellular Level, New Phytol., 1991, vol. 119, pp. 9–32.

    Article  CAS  Google Scholar 

  27. Razem, F.A. and Davis, A.R., Stomatal Frequency, Maturity and Index on Developing Bracts of Four Abscisic Acid Mutants and Wild-Type Plants of Arabidopsis thaliana, Environ. Exp. Bot., 2002, vol. 48, pp. 247–256.

    Article  CAS  Google Scholar 

  28. Cosgrove, D.J., Loosening of Plant Cell Walls by Expansins, Nature, 2000, vol. 407, pp. 321–326.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, J.K., Plant Salt Tolerance, Trends Plant Sci., 2001, vol. 6, pp. 66–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Gao.

Additional information

Published in Russian in Fiziologiya Rastenii, 2010, Vol. 57, No.2, pp. 254–259.

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Liu, K. & Lu, Y.T. Specific roles of AtEXPA1 in plant growth and stress adaptation. Russ J Plant Physiol 57, 241–246 (2010). https://doi.org/10.1134/S1021443710020111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443710020111

Key words

Navigation