Skip to main content
Log in

Glycinebetaine application ameliorates negative effects of drought stress in tobacco

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Two tobacco (Nicotiana tabacum L.) cultivars differing in drought tolerance were used to study the effects of foliar-applied glycinebetaine (GB, 80 mM) under well-watered and water-deficit conditions. The latter affected shoot biomass and height, with a more significant decrease observed in drought-sensitive cultivar than in drought-resistant cultivar. Foliar-applied GB was absorbed, accumulated by tobacco leaves and improved growth of plants subjected to water deficit. GB-treated plants maintained leaf water status apparently due to the improved osmotic adjustment. GB application enhanced the photosynthesis in water-deficit experiencing plants, mostly due to a greater stomatal conductance and carboxylation efficiency of CO2 assimilation. photosystem II (PSII) activity in GB-treated plants was higher, as suggested by higher actual efficiency of PSII (ΦPSII). GB increased anti-oxidative enzyme activities under water deficit. All these effects resulted in an improved shoot biomass and height. Therefore, foliar GB application at the rapid growth stage favors plant growth in drought-stressed plants, mainly by improving water status and increasing PSII activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASA:

ascorbic acid

APX:

ascorbate peroxidase

CAT:

catalase

Ci:

intercellular CO2 concentration

GB:

glycinebetaine

Gs:

stomatal conductance

MDA:

malondialdehyde

Pn :

net photosynthesis rate

POD:

peroxidase

ROS:

reactive oxygen species

RWC:

relative water content

SOD:

superoxide dismutase

PSII:

photosystem II

ΦPSII:

actual PSII efficiency

References

  1. Clough, B.F. and Milthorpe, F.L., Effect of Water Deficit on Leaf Development in Tobacco, Aust. J. Plant Physiol., 1975, vol. 2, pp. 191–300.

    Google Scholar 

  2. Grumet, R. and Hanson, A.D., Genetic Evidence for an Osmoregulatory Function of Glycinebetaine Accumulation in Barley, Aust. J. Plant Physiol., 1986, vol. 13, pp. 353–364.

    CAS  Google Scholar 

  3. Robinson, S.P. and Jones, J.P., Accumulation of Glycinebetaine in Chloroplasts Provides Osmotic Adjustment during Salt Stress, Aust. J. Plant Physiol., 1986, vol. 13, pp. 659–668.

    CAS  Google Scholar 

  4. Mansour, M.M.F., Protection of Plasma Membrane of Onion Epidermal Cells by Glycinebetaine and Proline against NaCl Stress, Plant Physiol. Biochem., 1998, vol. 36, pp. 762–772.

    Article  Google Scholar 

  5. Sakamoto, A. and Murata, N., The Role of Glycinebetaine in Protection of Plants from Stress: Clues from Transgenic Plants, Plant Cell Environ., 2002, vol. 25, pp. 163–171.

    Article  PubMed  CAS  Google Scholar 

  6. Allakhverdiev, S.I., Hayashi, H., Nishiyama, Y., Ivanov, A.G., Aliev, J.A., Klimov, V.V., Murata, N., and Carpentier, R., Glycinebetaine Protects the D1/D2/Cytb559 Complex of Photosystem II against Photo-Induced and Heat-Induced Inactivation, J. Plant Physiol., 2003, vol. 160, pp. 41–49.

    Article  PubMed  CAS  Google Scholar 

  7. Sakamoto, A. and Murata, N., Genetic Engineering of Glycinebetaine Synthesis in Plants: Current Status and Implication for Enhancement of Stress Tolerance, J. Exp. Bot., 2000, vol. 51, pp. 81–88.

    Article  PubMed  CAS  Google Scholar 

  8. Park, E.-J., Jeknic, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N., and Chen, T.H.H., Genetic Engineering of Glycinebetaine Synthesis in Tomato Protect Seeds, Plants, and Flowers from Chilling Damage, Plant J., 2004, vol. 40, pp. 474–487.

    Article  PubMed  CAS  Google Scholar 

  9. Nuccio, M.L., Russell, B.L., Nolte, K.D., Rathinasabapathi, B., Gage, D.A., and Hanson, A.D., The Endogenous Choline Supply Limits Glycinebetaine Synthesis in Transgenic Tobacco Expressing Choline Monooxygenase, Plant J., 1998, vol. 16, pp. 487–496.

    Article  PubMed  CAS  Google Scholar 

  10. Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A., and Selvaraj, G., Genetic Engineering of Glycinebetaine Production toward Enhancing Stress Tolerance in Plants: Metabolic Limitations, Plant Physiol., 2000, vol. 122, pp. 747–756.

    Article  PubMed  CAS  Google Scholar 

  11. Gorham, J., McDonnell, E., and WynJones, R.G., Determination of Betaines as Ultraviolet-Absorbing Esters, Ann. Chim. Acta, 1982, vol. 138, pp. 277–283.

    Article  CAS  Google Scholar 

  12. Genty, B., Briantais, J.M., and Baker, N.R., The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence, Biochim. Biophys. Acta, 1989, vol. 990, pp. 87–92.

    CAS  Google Scholar 

  13. Lichtenthaler, H.H., Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  14. Bates, L.S., Waldren, R.P., and Tear, I.D., Rapid Determination of Free Proline for Water Stress Studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  15. Trevelyan, W.E. and Harrison, J.S., Studies on Yeast Metabolism, Biochem. J., 1956, vol. 63, pp. 23–28.

    PubMed  CAS  Google Scholar 

  16. Prochazkova, D., Sairam, R.K., Srivastava, G.C., and Singh, D.V., Oxidative Stress and Antioxidant Activity as the Basis of Senescence in Maize Leaves, Plant Sci., 2001, vol. 16, pp. 765–771.

    Article  Google Scholar 

  17. Cornic, G., Ghasghai, J., Gent, B., and Briantais, J.M., Leaf Photosynthesis Is Resistant to a Mild Drought Stress, Photosynthetica, 1992, vol. 27, pp. 295–309.

    CAS  Google Scholar 

  18. Mäkelä, P., Kontturi, M., Pehu, E., and Somersalo, S., Photosynthetic Response of Drought- and Salt-Stressed Tomato and Turnip Rape Plants to Foliar-Applied Glycinebetaine, Physiol. Plant., 1999, vol. 105, pp. 45–50.

    Article  Google Scholar 

  19. Kishitani, S., Takanami, T., Suzuki, M., Oikawa, Y.S., Ishitani, M., Alvarez-Nakase, A.M., and Takabe, T., Compatibility of Glycinebetaine in Rice Plants: Evaluation Using Transgenic Rice Plants with a Gene for Peroxisomal Betaine Aldehyde Dehydrogenase from Barley, Plant Cell Environ., 2000, vol. 23, pp. 107–114.

    Article  CAS  Google Scholar 

  20. Mäkelä, P., Munns, R., Colmer, T.D., Condon, A.G., and Peltonen-Sainio, P., Effect of Foliar Applications of Glycinebetaine on Stomatal Conductance, Abscisic Acid and Soluble Concentrations in Leaves of Salt or Drought-Stressed Tomato, Aust J. Plant Physiol., 1998, vol. 25, pp. 655–663.

    Google Scholar 

  21. Xing, W. and Rajashekar, C.B., Alleviation of Water Stress in Beans by Exogenous Glycinebetaine, Plant Sci., 1999, vol. 148, pp. 185–195.

    Article  CAS  Google Scholar 

  22. Ma, Q.Q., Li, Y.H., Li, D.Q., Wang, W., and Zou, Q., Alleviation of Photoinhibition in Drought-Stressed Wheat (Triticum aestivum L.) by Foliar Applied Glycinebetaine, J. Plant Physiol., 2006, vol. 163, pp. 165–175.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, X.H., Liang, Z., and Lu, C.M., Genetic Engineering of the Biosynthesis of Glycinebetaine Enhances Photosynthesis against High Temperature Stress in Transgenic Tobacco Plant, Plant Physiol., 2005, vol. 138, pp. 2299–2309.

    Article  PubMed  CAS  Google Scholar 

  24. Harinasut, P., Tsutsui, K., Takabe, T., Nomura, M., and Takabe, T.K., Exogenous Glycinebetaine Accumulation and Increased Salt-Tolerance in Rice Seedlings, BioSci. Biotech. Biochem., 1996, vol. 60, pp. 366–368.

    Article  CAS  Google Scholar 

  25. Demiral, T. and Türkan, I., Does Exogenous Glycinebetaine Affect Antioxidative System of Rice Seedlings under NaCl Treatment? J. Plant Physiol., 2004, vol. 161, pp. 1089–1100.

    Article  PubMed  CAS  Google Scholar 

  26. Watad, A.-E.A., Reuveni, M., and Bressan, R.A., Enhanced Net K+ Uptake Capacity of NaCl-Adapted Cells, Plant Physiol., 1991, vol. 95, p. 1265.

    PubMed  CAS  Google Scholar 

  27. Terry, N., Limiting Factors in Photosynthesis: 4. Ion Stress, Mediated Changes in Light Harvesting and Electron Transport Capacity and Its Effects on Photosynthesis In Vivo, Plant Physiol., 1983, vol. 71, pp. 855–860.

    Article  PubMed  CAS  Google Scholar 

  28. Heber, U. and Heldt, H.W. The Chloroplast Envelope: Structure, Function and Role in Leaf Metabolism, Annu. Rev. Plant Physiol., 1981, vol. 32, pp. 139–168.

    Article  CAS  Google Scholar 

  29. Reddy, A.P., Chaitanya, K.V., and Vivekanandan, M., Drought-Induced Responses of Photosynthesis and Antioxidant Metabolism in Higher Plants, J. Plant Physiol., 2004, vol. 161, pp. 1189–1202.

    Article  CAS  Google Scholar 

  30. Lascano, H.R., Antonicelli, G.E., Luna, C.M., Melchiorre, M.N., Gymez, L.D., Racca, R.W., Trippi, V.S., and Casano, L.M., Antioxidant System Response of Different Wheat Cultivars under Drought: Field and In Vivo Studies, Aust. J. Plant Physiol., 2001, vol. 28, pp. 1095–1102.

    CAS  Google Scholar 

  31. Prasad, K.V.S.K. and Pardha, S.P., Enhance Tolerance to Photoinhibition in Transgenic Plants through Targeting of Glycinebetaine Biosynthesis into Chloroplasts, Plant Sci., 2004, vol. 166, pp. 1197–1212.

    Article  CAS  Google Scholar 

  32. Asada, K., The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygen and Dissipation of Excess Photons, Annu. Rev. Plant Physiol. Plant. Mol. Biol., 1999, vol. 50, pp. 601–639.

    Article  PubMed  CAS  Google Scholar 

  33. Smirnoff, N. and Cumbes, Q.J., Hydroxyl Radical Scavenging Activity of Compatible Solutes, Photochemistry, 1989, vol. 28, pp. 1057–1060.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 534–541.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X.L., Wang, Y.J., Xie, S.L. et al. Glycinebetaine application ameliorates negative effects of drought stress in tobacco. Russ J Plant Physiol 54, 472–479 (2007). https://doi.org/10.1134/S1021443707040061

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707040061

Key words

Navigation