Issue 21, 2018

Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence

Abstract

Remanent spin injection into a spin light emitting diode (spin-LED) at zero magnetic field is a prerequisite for future application of spin optoelectronics. Here, we demonstrate the remanent spin injection into GaAs based LEDs with a thermally stable Mo/CoFeB/MgO spin injector. A systematic study of magnetic properties, polarization-resolved electroluminescence (EL) and atomic-scale interfacial structures has been performed in comparison with the Ta/CoFeB/MgO spin injector. The perpendicular magnetic anisotropy (PMA) of the Mo/CoFeB/MgO injector shows more advanced thermal stability than that of the Ta/CoFeB/MgO injector and robust PMA can be maintained up to 400 °C annealing. The remanent circular polarization (PC) of EL from the Mo capped spin-LED reaches a maximum value of 10% after 300 °C annealing, and even remains at 4% after 400 °C annealing. In contrast, the Ta capped spin-LED almost completely loses the remanent PC under 400 °C annealing. Combined advanced electron microscopy and spectroscopy studies reveal that a large amount of Ta diffuses into the MgO tunneling barrier through the CoFeB layer after 400 °C annealing. However, the diffusion of Mo into CoFeB is limited and never reaches the MgO barrier. These findings afford a comprehensive perspective to use the highly thermally stable Mo/CoFeB/MgO spin injector for efficient electrical spin injection in remanence.

Graphical abstract: Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2018
Accepted
24 Apr 2018
First published
24 Apr 2018

Nanoscale, 2018,10, 10213-10220

Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence

B. Tao, P. Barate, X. Devaux, P. Renucci, J. Frougier, A. Djeffal, S. Liang, B. Xu, M. Hehn, H. Jaffrès, J. George, X. Marie, S. Mangin, X. Han, Z. Wang and Y. Lu, Nanoscale, 2018, 10, 10213 DOI: 10.1039/C8NR02250J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements