Skip to main content
Log in

Altering the 3′ UTR endonucleolytic cleavage site of a Chlamydomonas chloroplast mRNA affects 3′-end maturation in vitro but not in vivo

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The 3′ ends of chloroplast mRNAs are produced by the processing of longer precursors. The 3′ ends of most plastid mRNAs are located at, or several nucleotides downstream of, stem-loop structures, which act as 3′-end-processing signals and RNA stability elements. In chloroplasts of the green alga Chlamydomonas reinhardtii, 3′-end maturation of atpB mRNA involves endonucleolytic cleavage of the pre-mRNA at an AU-rich site located about 10 nucleotides downstream of the stem-loop structure. This cleavage is followed by exonucleolytic resection to generate the mature 3′ end. In order to define critical nucleotides of the endonucleolytic cleavage site, we mutated its sequence. Incubation of synthetic atpB pre-RNAs containing these mutations in a chloroplast protein extract resulted in the accumulation of 3′-end-processed products. However, in two cases where the AU-rich sequence of this site was replaced with a GC-rich one, the 3′ end of the stable processing product differed from that of the wild-type product. To examine whether these mutations affected atpB mRNA processing or accumulation in vivo, the endogenous 3′ UTR was replaced with mutated sequences by biolistic transformation of Chlamydomonas chloroplasts. Analysis of the resulting strains revealed that the accumulation of atpB mRNA was approximately equal to that of wild-type cells, and that a wild-type atpB 3′ end was generated. These results imply that Chlamydomonas atpB 3′ processing parallels the situation with other endonucleases such as Escherichia coli RNAse E, where specific sequences are required for correct in vitro processing, but in vivo these mutations can be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barkan, A. 1988. Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic RNAs. EMBO J. 7: 2637–2644.

    PubMed  Google Scholar 

  • Blowers, A.D., Klein, U., Ellmore, G.S. and Bogorad, L. 1993. Functional in vivo analyses of the 3? flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol. Gen. Genet. 238: 339–349.

    PubMed  Google Scholar 

  • Chen, H. and Stern, D.B. 1991. Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. J. Biol. Chem. 266: 242-5–24211.

    Google Scholar 

  • Cohen, S. and McDowall, K. 1997. RNase E: still a wonderfully mysterious enzyme. Mol. Microbiol. 23: 1-99–11-6.

    Google Scholar 

  • Drager, R.G. and Stern, D.B. 1998. Chloroplast RNA synthesis and processing. In: J.-D. Rochaix, M. Goldschmidt-Clermont and S. Merchant (Eds.), Molecular Biology of Chlamydomonas: Chloroplasts and Mitochondria. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 125–14-.

    Google Scholar 

  • Drager, R.G., Zeidler, M., Simpson, C.L. and Stern, D.B. 1996. A chloroplast transcript lacking the 3? inverted repeat is degraded by 3??5? exoribonuclease activity. RNA 2: 652–663.

    PubMed  Google Scholar 

  • Drager, R.G., Girard-Bascou, J., Choquet, Y., Kindle, K.L. and Stern, D.B. 1998. In vivo evidence for 5? to 3? exoribonuclease degradation of an unstable chloroplast mRNA. Plant J. 13: 85–96.

    Google Scholar 

  • Ehretsmann, C.P., Carpousis, A.J. and Krisch, H.M. 1992. Speci-ficity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev. 6: 149–159.

    PubMed  Google Scholar 

  • Gruissem, W. and Schuster, G. 1993. Control of mRNA degradation in organelles. In: G. Brawerman and J. Belasco (Eds.), Control of Messenger RNA Stability. Academic Press, Orlando, FL, pp. 329–365.

    Google Scholar 

  • Hayes, R., Kudla, J., Schuster, G., Gabay, L., Maliga, P. and Gruissem, W. 1996. Chloroplast mRNA 3?-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J. 15: 1132–1141.

    PubMed  Google Scholar 

  • Kudla, J., Hayes, R. and Gruissem, W. 1996. Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J. 15: 7137–7146.

    PubMed  Google Scholar 

  • Lisitsky, I. and Schuster, G. 1995. Phosphorylation of a chloroplast RNA-binding protein changes the affinity to RNA. Nucl. Acids Res. 23: 2506–2511.

    PubMed  Google Scholar 

  • Lisitsky, I., Liveanu, V. and Schuster, G. 1995. RNA-binding characteristics of a ribonucleoprotein from spinach chloroplast. Plant Physiol. 107: 933–941.

    PubMed  Google Scholar 

  • Lisitsky, I., Klaff, P. and Schuster, G. 1996. Addition of poly(A)-rich sequences to endonucleolytic cleavage sites in the degradation of spinach chloroplast mRNA. Proc. Natl. Acad. Sci. USA 93: 13398–13403.

    PubMed  Google Scholar 

  • Lisitsky, I., Kotler, A. and Schuster, G. 1997. The mechanism of preferential degradation of polyadenylated RNA in the chloroplast: the exoribonuclease 100RNP/PNPase displays high bind686 ing affinity for poly(A) sequence. J. Biol. Chem. 272: 17648–17653.

    PubMed  Google Scholar 

  • Mackie, G.A. 1998. Ribonuclease E is a 5?-end-dependent endonuclease. Nature 395: 720–723.

    PubMed  Google Scholar 

  • Mott, J.E., Galloway, J.L. and Platt, T. 1985. Maturation of Escherichia coli tryptophan operon mRNA: evidence for 3?-exonucleolytic processing after rho-dependent termination. EMBO J. 4: 1887–1891.

    PubMed  Google Scholar 

  • Nickelsen, J. and Link, G. 1993. The 54 kDa RNA-binding protein from mustard chloroplasts mediates endonucleolytic transcript 3? end formation in vitro. Plant J. 3: 537–544.

    PubMed  Google Scholar 

  • Rott, R., Drager, R.G., Stern, D.B. and Schuster, G. 1996. The 3? untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol. Gen. Genet. 252: 676–683.

    PubMed  Google Scholar 

  • Rott, R., Levy, H., Drager, R., Stern, D. and Schuster, G. 1998a. 3?-processed mRNA is preferentially translated in Chlamydomonas reinhardtii chloroplast. Mol. Cell Biol. 18: 4605–4611.

    PubMed  Google Scholar 

  • Rott, R., Liveanu, V., Drager, R.G., Stern, D.B. and Schuster, G. 1988b. The sequence and structure of the 3? untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol. Biol. 36: 307–314.

    Google Scholar 

  • Sakamoto, W., Sturm, N.R., Kindle, K.L. and Stern, D.B. 1994. petD mRNA maturation in Chlamydomonas reinhardtii chloroplasts: the role of 5? endonucleolytic processing. Mol. Cell. Biol. 14: 6180–6186.

    PubMed  Google Scholar 

  • Schuster, G. and Gruissem, W. 1991. Chloroplast mRNA 3? end processing requires a nuclear-encoded RNA-binding protein. EMBO J. 10: 1493–1502.

    PubMed  Google Scholar 

  • Stern, D.B. and Gruissem, W. 1989. Chloroplast mRNA 3? end maturation is biochemically distinct from prokaryotic mRNA processing. Plant Mol. Biol. 13: 615–625 (1989).

    PubMed  Google Scholar 

  • Stern, D.B. and Gruissem, W. 1987. Control of plastid gene expression: 3? inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51: 1145–1157.

    Article  PubMed  Google Scholar 

  • Stern, D.B. and Kindle, K.L. 1993. 3? end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a twostep process. Mol. Cell. Biol. 13: 2277–2285.

    PubMed  Google Scholar 

  • Stern, D.B., Jones, H. and Gruissem, W. 1989. Function of plastid mRNA 3? inverted repeats: RNA stabilization and gene-specific protein binding. J. Biol. Chem. 264: 18742–18750.

    PubMed  Google Scholar 

  • Stern, D.B., Radwanski, E.R. and Kindle, K.L. 1991. A 3? stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3: 285–297.

    Article  PubMed  Google Scholar 

  • Wahle, E. and Keller, W. 1992. The biochemistry of 3?-end cleavage and polyadenylation of messenger RNA precursors. Annu. Rev. Biochem. 61: 419–440.

    PubMed  Google Scholar 

  • Westhoff, P. and Herrmann, R.G. 1988. Complex RNA maturation in chloroplasts: the psbB operon from spinach. Eur. J. Biochem. 171: 551–564.

    PubMed  Google Scholar 

  • Woessner, J.P., Gillham, N.W. and Boynton, J.E. 1986. The sequence of the chloroplast atpB gene and its flanking regions in Chlamydomonas reinhardtii. Gene 44: 17–28.

    Article  PubMed  Google Scholar 

  • Yang, J. and Stern, D.B. 1997. The spinach chloroplast endoribonuclease CSP41 cleaves the 3?-untranslated region of petD mRNA primarily within its terminal stem-loop structure. J. Biol. Chem. 272: 12874–12880.

    PubMed  Google Scholar 

  • Yang, J., Schuster, G. and Stern, D.B. 1996. CSP41, a sequencespecific chloroplast mRNA binding protein, is an endoribonuclease. Plant Cell 8: 1409–1420.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rott, R., Liveanu, V., Drager, R.G. et al. Altering the 3′ UTR endonucleolytic cleavage site of a Chlamydomonas chloroplast mRNA affects 3′-end maturation in vitro but not in vivo. Plant Mol Biol 40, 679–686 (1999). https://doi.org/10.1023/A:1006252201661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006252201661

Navigation