Skip to main content
Log in

Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

An Arabidopsis cDNA clone that defines a new class of plant serine/threonine receptor kinases was found to be a member of a family of four clustered genes (lecRK-a1–a4) which have been cloned, sequenced and mapped on chromosome 3. This family belongs to a large superfamily encoding putative receptors with an extracellular domain homologous to legume lectins and appears to be conserved at least among dicots. In the Columbia ecotype only the lecRK-a1 and perhaps the lecRK-a3 gene is functional, since lecRK-a2 is disrupted by a Ty-copia retroelement and lecRK-a4 contains a frameshift mutation. Structural analysis of the lecRK-a1 and lecRK-a3 deduced amino-acid sequences suggests that the lectin domain is unlikely to be involved in binding monosaccharides but could interact with complex glycans and/or with hydrophobic ligands. Immunodetection of lecRK gene products in plasma membranes purified by free-flow electrophoresis showed that the lecRK-a proteins are probably highly glycosylated integral plasma membrane components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albersheim P, Darvill AG, McNeil M, Valent BS, Sharp JK, Nothnagel EA, Davis KR, Yamazaki N, Gollin DJ, York WS, Dudman WF, Darvill JE, Dell A: Oligosaccharins: naturally occuring carbohydrates with biological regulatory functions. In: Ciferri O, Dure III L (eds), Structure and Function of Plant Genomes, pp. 293–312. Plenum, New York (1983).

    Google Scholar 

  2. Altschul S, Gish W, Miller W, Myers EW, Lipman D: Basic local alignment search tool. J Mol Biol 215: 403–410(1990).

    Article  PubMed  Google Scholar 

  3. Auderset G, Sandelius AS, Penel C, Brightman A, Greppin H, Morré DJ: Isolation of plasma membrane and tonoplast fractions from spinach leaves by preparative free-flow electrophoresis and effect of photoinduction. Physiol Plant 68: 1–12(1986).

    Google Scholar 

  4. Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B: A protol for transient gene expression in Arabidopsis thaliana isolated from cell suspension cultures. Plant Physiol Biochem 30: 123–128(1992).

    Google Scholar 

  5. Becker JW, Reeke GN, Wang JL, Cunningham BA, Edelman GM: The covalent and three-dimensional structure of concanavalin A. J Biol Chem 250: 1513–1524(1975).

    PubMed  Google Scholar 

  6. Becraft PW, Stinard PS, McCarty DR: CRINKLY4: a TNFRlike receptor kinase involved in maize epidermal differenciation. Science 273: 1406–1409(1996).

    PubMed  Google Scholar 

  7. Booij P, Demel RA, de Pater SB, Kijne JW: Insertion of pea lectin into a phospholipid monolayer. Plant Mol Biol 31: 169–173 (1996).

    PubMed  Google Scholar 

  8. Bourne Y, Abergel C, Cambillau C, Frey M, Rougé P, Fontecilla-Camps JC: X-ray crystal structure determination and refinement at 1.9 Å resolution of isolectin I from the seeds of Lathyrus ochrus. J Mol Biol 214: 571–584(1990).

    PubMed  Google Scholar 

  9. Bourne Y, Mazurier J, Legrand D, Rougé P, Montreuil J, Spik G, Cambillau C: Interaction of a legume lectin with the human lactotransferrin N2 fragment or with the isolated biantennary glycopeptide: role of the fucose moiety. Structure 2: 209–219 (1994).

    PubMed  Google Scholar 

  10. Camilleri C, Lafleuriel J, Macadré C, Varoquaux F, Parmentier Y, Picard G, Caboche M, Bouchez D: A, YAC contig map of Arabidopsis thaliana chromosome 3. Plant J 14: 633–642 (1998).

    PubMed  Google Scholar 

  11. Canut H, Baudracco S, Cabané M, Boudet A-M Marigo G: Preparation of sealed tonoplast and plasma-membrane vesicles from Catharanthus roseus (L.) G. Don. cells by free-flow electrophoresis. Planta 184: 448–456(1991).

    Google Scholar 

  12. Clark SE, Williams RW, Meyerowitz EM: The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89: 575–585(1997).

    PubMed  Google Scholar 

  13. Cô té F, Hahn MG: Oligosaccharins: structures and signal transduction. Plant Mol Biol 26: 1379–1411(1994).

    PubMed  Google Scholar 

  14. Debray H, Rougé P: The fine sugar specificity of the Lathyrus ochrus seed lectin and isolectins. FEBS Lett 176: 120–124 (1984).

    Google Scholar 

  15. Dellaporta SL, Hicks JB: A plant DNA minipreparation: version II. Plant Mol Biol 1: 19–21(1983).

    Google Scholar 

  16. Drickamer K: Multiplicity of carbohydrate interactions. Nature Struct Biol 2: 437–439(1995).

    PubMed  Google Scholar 

  17. Dudareva N, Evrard JL, Pillay DT, Steinmetz A: Specific cDNA from Helianthus annuus L. encoding a highly basic protein. Plant Physiol 106: 403–404(1994).

    PubMed  Google Scholar 

  18. Einspahr H, Parks EH, Suguna K, Subramanian E, Suddath FL: The crystal structure of pea lectin at 3.0 angstrom resolution. J Biol Chem 261: 16518–16527(1986).

    PubMed  Google Scholar 

  19. Feuillet C, Schachermayr G, Keller B: Molecular cloning of a new receptor-like kinase encoded at the Lr10 disease resistance locus of wheat. Plant J 11: 45–52(1997).

    PubMed  Google Scholar 

  20. Gaboriaud C, Bissery V, Benchetrit T, Mornon JP: Hydrophobic cluster analysis: an efficient way to compare and analyse amino acid sequences. FEBS Lett 224: 149–155(1987).

    Article  PubMed  Google Scholar 

  21. Hamelryck TW, Dao-Thi MH, Poortmans F, Chrispeels MJ, Wyns L, Loris R: The crystallographic structure of phytohemagglutinin-L. J Biol Chem 271: 20479–20485 (1996).

    PubMed  Google Scholar 

  22. Hanks SK, Quinn AM: Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Meth Enzymol 200: 38–61(1991).

    PubMed  Google Scholar 

  23. Hervé C, Lescure B: Sequence of an Arabidopsis cDNA encoding a legume lectin-like protein, (X91259) (PGR95–095). Plant Physiol 109: 1127 (1995).

    Google Scholar 

  24. Hervé C, Dabos P, Galaud JP, Rougé P, Lescure B: Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J Mol Biol 258: 778–788(1996).

    PubMed  Google Scholar 

  25. Hopp TP, Woods KR: Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78: 3824–3828(1981).

    PubMed  Google Scholar 

  26. Janin J: Surface and inside volumes in globular proteins. Nature 277: 491–492(1979).

    PubMed  Google Scholar 

  27. John M, Röhrig H, Schmidt J, Walden R, Schell J: Cell signalling by oligosaccharides. Trends Plant Sci 2: 111–115 (1997).

    Google Scholar 

  28. Karplus PA, Schulz GE: Prediction of chain flexibility in proteins. Naturwissenschaften 72: 212 (1985).

    Google Scholar 

  29. Kohorn BD, Lane S, Smith TA: An Arabidopsis serine/ threonine kinase homologue with an epidermal growth factor repeat selected in yeast for its specificity for a thylakoid membrane protein. Proc Natl Acad Sci USA 89: 10989–10092 (1992).

    Google Scholar 

  30. Li J, Chory J: A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929–938 (1997).

    PubMed  Google Scholar 

  31. Lister C, Dean C: Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4: 745–750(1993).

    Article  Google Scholar 

  32. Maddison WP, Maddison DR: MacClade: Analysis of Phylogeny and Character Evolution, Version 3.0. Sinauer Associates, Sunderland, MA (1992).

    Google Scholar 

  33. Mu JH, Lee HS, Kao TH: Characterization of a pollenexpressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell 6: 709–721(1994).

    Article  PubMed  Google Scholar 

  34. Nasrallah JB, Nasrallah ME: Pollen-stigma signalling in the sporophytic self-incompatibility response. Plant Cell 5: 1325–1335 (1993).

    Article  PubMed  Google Scholar 

  35. Parker JMR, Guo D, Hodges RS: New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25: 5425–5432(1986).

    PubMed  Google Scholar 

  36. Rini JM: Lectin structure. Annu Rev Biophys Biomol Struct 24: 551–557(1995).

    PubMed  Google Scholar 

  37. Sambrook J, Fritsch E, Maniatis T: Molecular Cloning: A LaboratoryManual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  38. Sandelius AS, Penel C, Auderset G, Brightman A, Millard M, Morré DJ: Isolation of highly purified fractions of plasma membrane and tonoplast from the same homogenate of hypocotyls by free-flow electrophoresis. Plant Physiol 81: 177–185(1986).

    Google Scholar 

  39. Schulze-Muth P, Irmler S, Schröder G, Schröder J: Novel type of receptor-like protein kinase from a higher plant (Catharanthus roseus). J Biol Chem 271: 26684–26689(1996).

    PubMed  Google Scholar 

  40. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P: A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804–1806(1995).

    PubMed  Google Scholar 

  41. Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB: Molecular cloning of a putative receptor kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA 88: 8816–8820(1991).

    PubMed  Google Scholar 

  42. Stone JM, Walker JC: Plant protein kinase families and signal transduction. Plant Physiol 108: 451–457(1955).

    Google Scholar 

  43. Swarup R, Dumas C, Cock JM: A new class of receptor-like protein kinase gene from Arabidopsis thaliana possessing a domain similarity to plant lectin genes (PGR96–022). Plant Physiol 111: 347 (1996).

    PubMed  Google Scholar 

  44. Thornton JM, Edwards MS, Taylor WR, Barlow DJ: Location of continuous antigenic determinants in the protruding regions of proteins. EMBO J 5: 409–413(1986).

    PubMed  Google Scholar 

  45. Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y: The Arabidopsis ERECTA gene encodes a putative protein kinase with extracellular leucinerich repeats. Plant Cell 8: 735–746(1996).

    PubMed  Google Scholar 

  46. Tremousaygue D, Bardet C, Dabos P, Regad F, Pelese F, Nazer R, Gander E, Lescure B: Genome DNA sequencing around the EF-1a multigene locus of Arabidopsis thaliana indicates a high gene density and a shuffling of noncoding regions. Genome Res 7: 198–209(1997).

    PubMed  Google Scholar 

  47. Wang X, Zafiau P, Choudhary M, Lawton M:The PR5K receptor kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proc Natl Acad Sci USA 94: 2598–2602(1996).

    Google Scholar 

  48. Zhang R, Walker JC: Structure and expression of the S locusrelated genes of maize. Plant Mol Biol 21: 1171–1174(1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hervé, C., Serres, J., Dabos, P. et al. Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol Biol 39, 671–682 (1999). https://doi.org/10.1023/A:1006136701595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006136701595

Navigation