Skip to main content
Log in

Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Three clonal genotypes of Lotus corniculatus L. (bird's foot trefoil) were transformed with an antisense chalcone synthase (CHS) gene construct made using a stress induced CHS17 cDNA from Phaseolus vulgaris under the control of the constitutive CaMV 35S promoter and Nos terminator via Agrobacterium rhizogenes. After initial screening, ten antisense and five control co-transformation events from each recipient clonal genotype were analysed. After elicitation with glutathione, the level of tannin accumulation was found to be increased in a number of antisense root cultures derived from the low (S33) and moderate (S50) tannin recipient genotypes. Six antisense and four control transformed lines from genotype S50 were selected for more detailed study. The antisense CHS construct was found to be integrated into the genome, with a copy number ranging from 1 to 5 and antisense orientation was confirmed by PCR. In transformed root cultures, increased CHS transcript levels were noted in a number of antisense lines. Biochemical analyses of glutathione-elicited root cultures indicated a significant increase in tannin accumulation in antisense CHS lines and mean vestitol levels were reduced. These results show that the introduction of a heterologous antisense chalcone synthase construct into L. corniculatus resulted in an unpredicted molecular and biochemical phenotype. Such findings are discussed in relation to manipulation of this complex multigene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An C, Ichinose Y, Yamada T, Tanaka Y, Shiraishi T, Oku H: Organization of the genes encoding chalcone synthase in Pisum sativum. Plant Mol Biol 21: 789-803 (1993).

    PubMed  Google Scholar 

  2. Bailey JA, Mansfield JW: Phytoalexins. Blackie, Glasgow (1982).

    Google Scholar 

  3. Beffa RS, Neuhaus J-M, Meins F: Physiological compensation in antisense transformants: Specific induction of an ‘ersatz’ glucan endo-1,3-glucosidase in plants infected with necrotizing viruses. Proc Natl Acad Sci USA 90: 8792-8796 (1993).

    PubMed  Google Scholar 

  4. van Blokland R, de Lange P, Mol JNM, Kooter JM: Modulation of gene expression in plants by antisense genes. In Crooke ST, Lebleu B (eds) Antisense Research and Applications, pp. 125-148. CRC Press, Boca Raton, FL (1993).

    Google Scholar 

  5. Blount JW, Dixon RA, Paiva NL: Stress responses in alfalfa (Medicago sativa L.). XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Path 41: 333-349 (1992).

    Google Scholar 

  6. Bonde MR, Miller RL, Ingham JL: Induction and identification of sativan and vestitol as two phytoalexins from Lotus corniculatus. Phytochemistry 12: 2957-2959 (1973).

    Google Scholar 

  7. Carron TR, Robbins MP, Morris P: Genetic modification of condensed tannin biosynthesis in Lotus corniculatus. I. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in ‘hairy root’ cultures. Theor Appl Genet 87: 1006-1015 (1994).

    Google Scholar 

  8. Cesarone CF, Bolognesi C, Santi L: Improved microfluorometric DNA determination in biological material using 33258 Hoescht. Anal Biochem 100: 188-197 (1979).

    PubMed  Google Scholar 

  9. Colliver SP, Robbins MP, Morris P: An antisense strategy for the genetic manipulation of condensed tannin and isoflavonoid phytoalexin accumulation in transgenic Lotus corniculatus L. Acta Hort 381: 148-151 (1994).

    Google Scholar 

  10. Cramer CL, Edwards K, Dron M, Liang X, Dildine SL, Bolwell GP, Dixon RA, Lamb CJ, Schuch W: Phenylalanine ammonialyase gene organisation and structure. Plant Mol Biol 12: 367-383 (1989).

    Google Scholar 

  11. Dalkin K, Edwards R, Edington B, Dixon RA: Stress responses in alfalfa (Medicago sativa L.). I. Induction of phenylpropanoid biosynthesis and hydrolytic enzymes in elicitor-treated cell suspension cultures. Plant Physiol 92: 440-446 (1990).

    Google Scholar 

  12. Dharmatilake AJ, Bauer WD: Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl Environ Microbiol 58: 1153-1158 (1992).

    Google Scholar 

  13. Elomaa P, Honkanen J, Puska R, Seppänen P, Helariutta Y, Mehto M, Kotilainen M, Nevalainen L, Teeri TH: Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/technology 11: 508-511 (1993).

    Google Scholar 

  14. Estabrook EM, Sengupta-Gopalan C: Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule deveolpment. Plant Cell 3: 299-308 (1991).

    PubMed  Google Scholar 

  15. Feinbaum RL, Ausubel FM: Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8: 1985-1992 (1988).

    PubMed  Google Scholar 

  16. Gamborg OL, Miller RA, Ojima K: Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151-158 (1968).

    PubMed  Google Scholar 

  17. Grayer RJ, Kimmins FM, Padgham DE, Harborne JB, Ranga Rao DV: Condensed tannin levels and resistance of groundnuts (Arachis hypogaea) against Aphis craccivora. Phytochemistry 31: 3795-3800 (1992).

    Google Scholar 

  18. Hahlbrock K, Scheel D: Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347-369 (1989).

    Google Scholar 

  19. Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier M-T, Schuch W: Manipulation of lignin quality by down-regulation of cinnamyl alcohol dehydrogenase. Plant J 6: 339-350 (1994).

    Google Scholar 

  20. Harborne JB: Introduction to Ecological Biochemistry, 4th ed. Academic Press, London. (1993).

    Google Scholar 

  21. Harker CL, Noel-Ellis TH, Coen ES: Identification and genetic regulation of the chalcone synthase multigene family in pea. Plant Cell 2: 185-194 (1990).

    PubMed  Google Scholar 

  22. Hedin PA, Waage SK: Roles of flavonoids in plant resistance to insects. In: Cody V, Middleton E, Harborne JB (eds) Plant Flavonoids in Biology and Medicine, vol. 1. Biochemical, Pharmacological and Structure-Activity Relationships, pp. 87-100. Alan R. Liss, New York. (1986).

    Google Scholar 

  23. Heller W, Forkmann G: Biosynthesis. In: Harborne JB (ed) The Flavonoids, pp. 399-425. Chapman and Hall, London (1988).

    Google Scholar 

  24. Hemon P, Robbins MP, Cullimore JV: Targeting of glutamine synthetase to the mitochondria of transgenic tobacco. Plant Mol Biol 15: 895-904 (1990).

    PubMed  Google Scholar 

  25. Herrmann A, Shulz W, Hahlbrock K: Two alleles of the single copy chalcone synthase gene in parsley differ by a transposonlike element. Mol Gen Genet 212: 95-98 (1988).

    Google Scholar 

  26. Hirel B, Marsolier MC, Hoarau A, Hoarau J, Brangeon J, Schafer R, Verma DPS: Forcing expression of soybean root glutamine synthetase gene in tobacco induces a native gene encoding cytosolic enzyme. Plant Mol Biol 20: 207-218 (1992).

    PubMed  Google Scholar 

  27. Ingham JL: A further investigation of phytoalexin formation in the genus Trifolium. Z Naturforsch 45c: 829-834 (1990).

    Google Scholar 

  28. Jacobs M, Rubery PH: Naturally occurring auxin transport regulators. Science 241: 346-349 (1988).

    Google Scholar 

  29. Jorgensen R: The genetic origins of biosynthesis and lightresponsive control of the chemical UV screen of land plants. In: Ellis BE, Kuroki GW, Stafford HA (eds) Genetic Engineering of Plant Secondary Metabolism, pp. 179-192. Plenum Press, New York. (1994).

    Google Scholar 

  30. Junghans H, Dalkin K, Dixon RA: Stress responses in alfalfa (Medicago sativa L.). 15. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol Biol 22: 239-253 (1993).

    PubMed  Google Scholar 

  31. Koes RE, Spelt CE, Mol JNM: The chalcone synthase multigene family of Petunia hybrida (V30): differential, lightregulated expression during flower development and UV light induction. Plant Mol Biol 12: 213-225 (1989).

    Google Scholar 

  32. van der Krol AR, Stuitje AR, Mol JNM: Modulation of floral pigmentation by antisense technology. In: Mol JNM, van der Krol AR (eds) Antisense nucleic acids and proteins. pp. 125-140. Marcel Dekker, New York (1991).

    Google Scholar 

  33. Lamb CJ, Lawton MA, Dron M, Dixon RA: Signals and transduction mechanisms for activation of plant defense against microbial attack. Cell 56: 215-224 (1989).

    PubMed  Google Scholar 

  34. Lawton MA, Lamb CJ: Transcriptional activation of plant defence genes by fungal elicitor, wounding and infection. Mol Cell Biol 7: 335-341 (1987).

    PubMed  Google Scholar 

  35. Middleton EM, Teramura AH: The role of flavonol glycosides and carotenoids in protecting soybean fromultraviolet damage. Plant Physiol 103: 741-752 (1993).

    PubMed  Google Scholar 

  36. Mol JNM, van der Krol AR, van Tunen AJ, van Blokland R, de Lange P, Stuitje AR: Regulation of plant gene-expression by antisense RNA. FEBS Lett 268: 427-430 (1990).

    PubMed  Google Scholar 

  37. Morris P, Robbins MP: Condensed tannin formation by Agrobacterium rhizogenes transformed root and shoot organ cultures of Lotus corniculatus. J Exp Bot 43: 221-231 (1992).

    Google Scholar 

  38. Ougham HJ, Davies TGE: Leaf development in Lolium temulentum: gradients of RNA complement plastid and non-plastid transcripts. Physiol Plant 79: 331-338 (1990).

    Google Scholar 

  39. Re EB, Jones D, Learned RM: Co-expression of native and introduced genes reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J 7: 771-784 (1995).

    PubMed  Google Scholar 

  40. Robbins MP, Carron TR, Morris P: Transgenic Lotus corniculatus: a model system for the modification and genetic manipulation of condensed tannin biosynthesis. In: Hemingway RW, Laks PE (eds) Plant Polyphenols, pp. 111-131. Plenum Press, New York. (1992).

    Google Scholar 

  41. Robbins MP, Carron TR, Webb KJ: Detecting transgenes in Lotus corniculatus using the polymerase chain reaction. Lotus Newsl 24: 45-48 (1993).

    Google Scholar 

  42. Robbins MP, Evans TE, Morris P, Carron TR: Some notes on the extraction of genomic DNA from transgenic Lotus. Lotus Newsl 22: 18-21 (1991).

    Google Scholar 

  43. Robbins MP, Hartnoll J, Morris P: Phenylpropanoid defence responses in transgenic Lotus corniculatus. I. Glutathione elicitation of isoflavan phytoalexins in transformed root cultures. Plant Cell Rep 10: 59-62 (1991).

    Google Scholar 

  44. Robbins MP, Thomas B, Morris P: Phenylpropanoid defence responses in transgenic Lotus corniculatus. II. Modelling plant defence responses in transgenic root cultures using thiol and carbohydrate elicitors. J Exp Bot 46: 513-524 (1995).

    Google Scholar 

  45. Ryder TB, Hedrick SA, Bell JN, Liang X, Clouse SD, Lamb CJ: Organisation and differential activation of a gene family encoding the plant defence enzyme chalcone synthase in Phaseolus vulgaris. Mol Gen Genet 210: 219-233 (1987).

    PubMed  Google Scholar 

  46. Salehuzzaman SNIM, Jacobsen E, Visser RGF: Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Mol Biol 23: 947-962 (1993).

    PubMed  Google Scholar 

  47. Sallaud C, El-Turk J, Bigarré L, Sevin H, Welle R, Esnault R: Nucleotide sequences of three chalcone reductase genes from alfalfa. Plant Physiol 108: 869-870 (1995).

    PubMed  Google Scholar 

  48. Scalbert A: Antimicrobial properties of tannins. Phytochemistry 30: 3875-3883 (1991).

    Google Scholar 

  49. Stafford HA, Cheng T-Y: The procyanidins of douglas fir seedlings, callus, and cell suspension cultures derived from cotyledons. Phytochemistry 19: 131-135 (1980).

    Google Scholar 

  50. Todd JJ, Vodkin LO: Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 8: 687-699 (1996).

    PubMed  Google Scholar 

  51. van Tunen AJ, Koes RE, Spelt CE, van der Krol AR, Stuitje AR, Mol JNM: Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J 7: 1257-1263 (1988).

    PubMed  Google Scholar 

  52. Wingender R, Roehrig H, Hoericke C, Wing D, Schell J: Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol Gen Genet 218: 315-322 (1989).

    PubMed  Google Scholar 

  53. Zerback R, Dressler K, Hess D: Flavonoid compounds from pollen and stigma of Petunia hybrida: inducers of the vir region of the Agrobacterium tumefaciens Ti plasmid. Plant Sci 62: 83-91 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colliver, S., Morris, P. & Robbins*, M. Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus. Plant Mol Biol 35, 509–522 (1997). https://doi.org/10.1023/A:1005821801228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005821801228

Navigation