Skip to main content
Log in

Neotectonic controls and stream piracy on the evolution of a river catchment: a case study in the Agua de la Peña River basin, Western Pampean Ranges, Argentina

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Purpose

The La Peña River basin is located to the northeast of the province of San Juan, and crosses from east to west, the entire northern portion of the sierra de Valle Fértil, in Western Pampean Ranges. The strong relief of the mountain range is attributed to neotectonic activity of the NW trending Valle Fértil fault. The purpose of this study is to interpret the geological control on the dynamic drainage organization and the relevant neotectonic tilt due to the above-mentioned fault and to the NE trending El Alto fault. In addition, to identify stream piracy due to neotectonic activity of the Valle Fértil and El Alto faults in this river basin.

Method

We analyze the influence of tectonics in the evolution and shaping up of the present day Agua de La Peña River drainage basin, using geomorphic indices and markers. Several morphotectonic parameters obtained for the Agua de La Peña River basin allow us to determine the inference of tectonic deformation along the river profile. The regional morphometric analysis relies on four topographical swath profiles to identify several regional topographic features and anomalies. We examine the main river channel and tributaries in terms of their longitudinal profiles and knickpoints distribution in order to explore the signal of transient geomorphic response to river capture.

Results

Our results show the main control of neotectonics on the local topography and drainage network. Based on the foregoing, we infer that the landscape in northern portion of sierra de Valle Fértil is in a transient state derived from a combination between drainage arrangement and relief rejuvenation, and so, river basin features are mainly caused by divide migration, drainage network adjustments and catchment capture due to neotectonism. It may result from the tectonic adjustment of Valle Fértil and El Alto faults since the Pleistocene until the present day.

Conclusion

We conclude that reorganization of drainage lines by capture and reversal drainage by neotectonic activity could explain the unusual pattern of this river basin.

Resumen

Propósito

La cuenca del río Agua de La Peña está ubicada al noreste de la provincia de San Juan, y atraviesa de este a oeste, toda la porción norte de la sierra de Valle Fértil, en las Sierras Pampeanas Occidentales. El fuerte relieve de la sierra de Valle Fértil se atribuye a la actividad neotectónica de la falla Valle Fértil ubicada en su flanco occidental y con rumbo NO. El propósito de nuestro estudio es interpretar el control geológico sobre la red de drenaje de la cuenca y el basculamiento neotectónico de la misma debido a la estructura antes mencionada y a la falla El Alto, de rumbo NE. También se ha identificado un el evento de captura fluvial en esta cuenca hidrográfica debido a la actividad neotectónica de dichas fallas.

Metodología

En este estudio, se analiza la influencia de la tectónica en la evolución y modelización de la actual cuenca del río Agua de La Peña, a través del uso de índices y marcadores geomorfológicos. Los diversos parámetros morfotectónicos obtenidos para la cuenca del río Agua de La Peña permiten determinar la influencia de la deformación tectónica a lo largo del perfil del río. El análisis morfométrico regional se basa en la construcción de cuatro perfiles topográficos swath con el fin de identificar diversas características topográficas regionales y anomalías. Para analizar la señal de la respuesta geomorfológica transitoria a la captura fluvial, se ha evaluado el canal principal del río y sus afluentes en términos de sus perfiles longitudinales y de distribución de los knickpoints.

Resultados

Nuestros resultados muestran el control de la neotectónica sobre la topografía local y la red de drenaje. Sobre la base de lo anterior, inferimos que el paisaje en la porción norte de la sierra de Valle Fértil se encuentra en un estado transitorio derivado de una combinación entre el diseño del drenaje y el rejuvenecimiento del relieve. Las características de la cuenca son causadas principalmente por la migración de la divisoria y la captura de la cabecera debido a la actividad tectónica reciente. Esto puede ser el resultado del ajuste tectónico de las fallas de Valle Fértil y El Alto desde el Pleistoceno hasta la actualidad.

Concluimos

Que la reorganización de las líneas de drenaje debido a la captura e inversión del drenaje debido a la actividad tectónica cuaternari podrían explicar el diseño inusual de esta cuenca fluvial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alcober, O. (1996). Revisión de los Crurotarsis, estratigrafía y tafonomía de la Formación Ischigualasto. Unpublished Ph.D. thesis. Argentina: Universidad Nacional de San Juan.

  • Allmendinger, R., Figueroa, D., Zinder, E., Beer, J., Mpodozis, C., & Isacks, B. (1990). Foreland shortening and crustal balancing in the Andes at 30° latitude. Tectonics, 9, 789–809. https://doi.org/10.1029/tc009i004p00789.

    Article  Google Scholar 

  • Alvarado, P., Pardo, M., Gilbert, H., Miranda, S., Anderson, M., Saez, M., et al. (2009). Flat–slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina. In S. Kay, V. A. Ramos, & W. Dickinson (Eds.), MWR204: Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision (pp. 261–278). Boulder: Geological Society of America. https://doi.org/10.1130/2009.1204(12).

    Google Scholar 

  • Anderson, M., Alvarado, P., Zandt, G., & Beck, S. L. (2007). Geometry and brittle deformation of the subducting Nazca Plate, central Chile and Argentina. Geophysical Journal International, 171, 419–434. https://doi.org/10.1111/j.1365-246x.2007.03483.x.

    Article  Google Scholar 

  • Audemard, F. A. (1999). Morpho-structural expression of active thrust fault systems in the humid tropical foothills of Colombia and Venezuela. Zeitschrift für Geomorphologie, 118, 1–18.

    Google Scholar 

  • Bishop, P., Hoey, T. B., Jansen, J. D., & Artza, I. L. (2005). Knickpoint recession rates and catchment area: the case of uplifted rivers in Eastern Scotland. Earth Surface Processes and Landforms, 30, 767–778. https://doi.org/10.1002/esp.1191.

    Article  Google Scholar 

  • Bull, W. B., & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock Fault, California. In: D. Doehring (Ed.), Geomorphology in arid regions, Proceedings of eighth annual geomorphology symposium (pp. 115–138). Binghamton: State University of New York.

  • Burbank, D. W., & Anderson, R. S. (2001). Tectonic geomorphology (p. 270). Oxford: Blackwell Scientific.

    Google Scholar 

  • Burbank, D. W., McLean, J. K., Bullen, M., Abdrakhmatov, K. Y., & Miller, M. M. (1999). Partitioning of intermontane basins by thrust related folding. Tien Shan, Kyrgyzstan: Basin Research, 11, 75–92. https://doi.org/10.1046/j.1365-2117.1999.00086.x.

    Google Scholar 

  • Cahill, T., & Isacks, B. L. (1992). Seismicity and shape of the subducted Nazca plate. Journal of Geophysical Research, 97(B12), 17503–17529. https://doi.org/10.1029/2003gl019231.

    Article  Google Scholar 

  • Cardinali, A., Baraldo, J., Monetta, A., & Weidmann, R. (1999). Análisis estructural de la falla El Alto, Ischigualasto, San Juan. In 14th Argentine geological congress (pp. 212–215).

  • Chen, Y. C., Sung, Q., Chen, C. N., & Jean, J. S. (2006). Variations in tectonic activities of the central and southwestern foothills, Taiwan, inferred from river Hack profiles. Terrestrial Atmospheric and Oceanic Sciences, 17, 563–578.

    Article  Google Scholar 

  • Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., et al. (2004). Surface uplift, tectonics and erosion of eastern Tibet from large scale drainage patterns. Tectonics, 23, 1–20. https://doi.org/10.1029/2002tc001402.

    Article  Google Scholar 

  • Costa, C., Machette, M., Dart, R., Bastías, H., Paredes, J., Perucca, L., Tello, G., & Haller, K. (2000). Map and database of quaternary faults and folds in Argentina. In U.S. Geological Survey Open-File Report 00-0108, Denver, Map at 1:2,000,000 scale + report of 75 pp.

  • Cox, R. T. (1994). Analysis of drainage basin symmetry as a rapid technique to identify areas of possible quaternary tilt block tectonics: an example from the Mississippi embayment. Geological Society American Bulletin, 106, 571–581. https://doi.org/10.1130/0016-7606.

    Article  Google Scholar 

  • Currie, B., Colombi, C., Tabor, N., Shipman, T., & Montañez, I. (2009). Stratigraphy and architecture of the Upper Triassic Ischigualasto Formation, Ischigualasto Provincial Park, San Juan, Argentina. Journal of South American Earth Sciences, 27, 74–87. https://doi.org/10.1016/j.jsames.2008.10.004.

    Article  Google Scholar 

  • Delcaillau, B., Carozza, J. M., & Laville, E. (2006). Recent fold growth and drainage development: the Janauri and Chandigarh anticlines in the Siwalik foothills, Northwest India. Geomorphology, 76, 241–256. https://doi.org/10.1016/j.geomorph.2005.11.005.

    Article  Google Scholar 

  • Esper Angillieri, M. Y. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55, 107–111. https://doi.org/10.1007/s00254-007-0969-2.

    Article  Google Scholar 

  • Esper Angillieri, M. Y. (2012). Morphometric characterization of the Carrizal basin applied to the evaluation of flash floods hazard, San Juan, Argentina. Quaternary International, 253, 74–79. https://doi.org/10.1016/j.quaint.2011.05.011.

    Article  Google Scholar 

  • Esper Angillieri, M. Y., & Perucca, L. P. (2014). Geomorphology and morphometry of the de La Flecha river basin, San Juan, Argentina. Environmental Earth Sciences, 72, 3227–3237. https://doi.org/10.1007/s12665-014-3227-4.

    Article  Google Scholar 

  • Fairbridge, R. (1968). Incised meanders. In: R. W. Fairbridge (Ed.) The Encyclopedia of Geomorphology, Encyclopedia of Earth Sciences Series (Vol. 3, pp. 548–550). Reinhold Book Corporation.

  • Friend, P. F., Jones, N. E., & Vincent, S. J. (1999). Drainage evolution in active mountain belts: extrapolation backwards from present day Himalayan River patterns. Special Publication of the international Association of Sedimentologists, 28, 305–313.

    Google Scholar 

  • Furque, G., González, P., & Caballé, M. (1998). Descripción de la hoja geológica 3169-II, San José de Jáchal (Provincias de San Juan y La Rioja). Servicio Geológico y Minero Argentino.

  • Gardner, T. W., Back, W., Bullard, T. F., Hare, P. W., Kesel, R. H., Lowe, D. R., et al. (1987). Central America and the Caribbean. In W. L. Graf (Ed.), Geomorphic systems of North America (Vol. 2, pp. 343–401). Boulder: Geological Society of America, Centennial Special.

    Google Scholar 

  • Giletycz, S., Loget, N., Chang, C., & Mouthereau, F. (2015). Transient fluvial landscape and preservation of low-relief terrains in an emerging orogen: Example from Hengchun Peninsula, Taiwan. Geomorphology, 231, 169–181. https://doi.org/10.1016/j.geomorph.2014.11.026.

    Article  Google Scholar 

  • Goldrick, G., & Bishop, P. (2007). Regional analysis of bedrock stream long profiles: evaluation of Hack’s SL form, and formulation and assessment of an alternative (the DS form). Earth Surficial Processes, Landforms, 32, 649–671. https://doi.org/10.1002/esp.1413.

    Article  Google Scholar 

  • González Díaz, E. F., & Castro Godoy, S. (2008). Arroyo Limay chico: un ejemplo de captura fluvial en la cuenca superior del Río Limay (SE de Neuquén). Revista de la Asociación Geológica Argentina, 63, 76–83.

    Google Scholar 

  • Hack, J. T. (1973). Stream-profile analysis and stream-gradient indices. U.S. Geological Survey Journal of Research, 1, 421–429.

    Google Scholar 

  • Hare P., & Gardner T. (1984). Geomorphic indicators of vertical neo-tectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In M. Morisawa & J. Hack (Eds.) Tectonic geomorphology, Proceedings 15th geomorphology symposium Birmingham (pp. 76–104). Boston: Allen & Unwinr.

  • Harvey, A. M., & Wells, S. G. (1987). Response of Quaternary fluvial system to differential epeirogenic uplift: Aguas and Feos river systems, southeast Spain. Geology, 15, 83–109.

    Article  Google Scholar 

  • Hergarten, S., Robl, J., & Stüwe, K. (2014). Extracting topographic swath profiles across curved geomorphic features. Earth Surface Dynamics, 2, 97–104. https://doi.org/10.5194/esurf-2-97-2014.

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins. Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.

    Article  Google Scholar 

  • Jackson, J., & Leeder, M. (1994). Drainage systems and the development of normal faults: an example from Pleasant Valley, Nevada. Journal of Structural Geology, 16, 1041–1059. https://doi.org/10.1016/0191-8141(94)90051-5.

    Article  Google Scholar 

  • Jordan, T. E., & Allmendinger, R. W. (1986). The Sierras Pampeanas of Argentina: A modern analogue of Rocky Mountain foreland deformation. American Journal of Science, 286, 737–764. https://doi.org/10.2475/ajs.286.10.737.

    Article  Google Scholar 

  • Kay, S. M., & Mpodozis, C. (2002). Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat slab. Journal of South American Earth Sciences, 15, 39–59. https://doi.org/10.1016/S0895-9811(02)00005-6.

    Article  Google Scholar 

  • Kay, S., Mpodozis, C., Ramos, V., & Munizaga, F. (1991). Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28° to 33° S). In R. S. Harmon & C. W. Rapela (Eds.), Andean magmatism and its tectonic setting (Vol. 265, pp. 113–137). Boulder: Geological Society of America. (special paper).

    Chapter  Google Scholar 

  • Keller, E. A., & Pinter, N. (1996). Active tectonics: Earthquakes, uplift and landscapes (1st ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • Keller, E. A., & Pinter, N. (2002). Active tectonics. Earthquakes, uplift, and landscape (2nd ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • Kendrick, E., Bevis, M., Smalley, R. J., Brooks, B., Vargas, R. B., Lauría, E., et al. (2003). The Nazca-South America Euler vector and its rate of change. Journal of South American Earth Sciences, 16, 125–131. https://doi.org/10.1016/s0895-9811(03)00028-2.

    Article  Google Scholar 

  • Lave, J., & Avouac, J. P. (2001). Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research, 106, 561–591.

    Article  Google Scholar 

  • Martinod, J., Husson, L., Roperch, P., Guillaume, B., & Espurt, N. (2010). Horizontal subduction zones, convergence velocity and the building of the Andes. Earth and Planetary Science Letters, 299, 299–309. https://doi.org/10.1016/j.epsl.2010.09.010.

    Article  Google Scholar 

  • Mather, A. E. (2000). Adjustment of drainage network to capture induced base-level change: an example from the Sorbas basin, SE Spain. Geomorphology, 34, 271–289. https://doi.org/10.1016/s0169-555x(00)00013-1.

    Article  Google Scholar 

  • Melton, M. A. (1957). An analysis of the relation among elements of climate, surface properties and geomorphology. Office of Naval Research Project NR389-042, Technical report 11. New York: Department of Geology Columbia University.

  • Milana, J. P., & Alcober, O. (1994). Modelo tectosedimentario de la cuenca triásica de Ischigualasto (San Juan, Argentina). Revista de la Asociación Geológica Argentina, 49, 217–235.

    Google Scholar 

  • Montgomery, D. R. (2001). Slope distributions, hillslope thresholds and steady-state topography. American Journal of Science, 301, 432–454. https://doi.org/10.2475/ajs.301.4-5.43.

    Article  Google Scholar 

  • Ortiz, G., Alvarado, P., Fosdick, J., Perucca, L., Saez, M., & Venerdini, A. (2015). Active Deformation in the Northern Sierra de Valle Fértil, Sierras Pampeanas, Argentina. Journal of South American Earth Sciences, 64, 339–350. https://doi.org/10.1016/j.jsames.2015.08.015.

    Article  Google Scholar 

  • Perucca, L. P., & Esper Angillieri, M. Y. (2011). Morphometric characterization of the Molle Basin applied to the evaluation of flash floods hazard, Iglesia Department, San Juan, Argentina. Quaternary International, 233, 81–86. https://doi.org/10.1016/j.quaint.2010.08.007.

    Article  Google Scholar 

  • Perucca, L. P., & Vargas, H. (2014). Neotectónica de la provincia de San Juan, centro-oeste de Argentina. Boletín de la Sociedad Geológica Mexicana, 66, 291–304.

    Article  Google Scholar 

  • Pilger, R. H. (1981). Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes. Geological Society of America Bulletin, 92, 448–456.

    Article  Google Scholar 

  • Ramos, V. (1988). The tectonics of the Central Andes; 30° to 33°S latitude. In S. Clark & C. Burchfiel (Eds.), Processes in continental lithospheric deformation (Vol. 218, pp. 31–54). Boulder: Geological Society of America. (special paper).

    Chapter  Google Scholar 

  • Ramos, V. A. (1999). Plate tectonic setting of the Andean Cordillera. Episodes, 22, 183–190.

    Google Scholar 

  • Ramos, V. A., Cristallini, E. O., & Pérez, D. (2002). The Pampean flat-slab of the Central Andes. Journal of South American Earth Sciences, 15, 59–78.

    Article  Google Scholar 

  • Ritter, D. F., Kochel, R. C., & Miller, J. R. (2002). Process geomorphology (p. 560). Long Grove: Waveland Press.

    Google Scholar 

  • Rosenbaum, G., & Mo, W. (2011). Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Research, 19, 571–582. https://doi.org/10.1016/j.gr.2010.10.007.

    Article  Google Scholar 

  • Rossello, E., Mozetic, M., Cobbold, P., de Urreiztieta, M., Gapais, D., & López-Gamundi, O. (1996). The Valle Fértil flower structure and its relationships with the Precordillera and Pampean Ranges, (30–32°S, Argentina). In Third ISAG (pp. 481–484).

  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Ambos, New Jersey. Geological Society of America Bulletin, 67, 597–646.

    Article  Google Scholar 

  • Schumm, S. A. (1963). The sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 74, 1089–1100.

    Article  Google Scholar 

  • Schumm, S. A. (1977). Applied fluvial geomorphology. In J. R. Hails (Ed.), Applied geomorphology (pp. 119–156). Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Schumm, S. A. (1986). Alluvial river response to active tectonics, studies in geophysics, active tectonics (pp. 80–94). Washington DC: National Academy Press.

    Google Scholar 

  • Schumm, S. A., Dumont, J. F., & Holbrook, J. M. (2002). Active tectonics and alluvial rivers. Cambridge: Cambridge University Press.

    Google Scholar 

  • Seidl, M. A., & Dietrich, W. E. (1992). The problem of channel erosion into bedrock. CATENA, 23, 101–124.

    Google Scholar 

  • Sinha-Roy, A. (2001). Neotectonically controlled catchment capture: An example from the Banas and Chambal drainage basins, Rajasthan. Current Science, 80, 293–298.

    Google Scholar 

  • Stern, C. R. (2004). Active Andean volcanism: It’s geologic and tectonic setting. Revista Geológica de Chile, 31, 161–206. https://doi.org/10.4067/S0716-02082004000200001.

    Article  Google Scholar 

  • Stipanicic, P. N. (2002). Introducción. In P. N. Stipanicic & C. Marsicano (Eds.), Léxico Estratigráfico de la Argentina: Triásico (Vol. 8, Serie “B” (Didáctica y Complementaria), pp. 1–24). Asociación Geológica Argentina).

  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology (pp. 4–76). New York: McGraw Hill.

    Google Scholar 

  • Summerfield, M. (1991). Global geomorphology: An introduction to the study of landforms (p. 537p). Harlow: Longman.

    Google Scholar 

  • Suvires, G., Mon, R., & Gutiérrez, A. (2012). Tectonic effects on the drainage disposition in mountain slopes and orogeny forelands. A case study: the Central Andes of Argentina. Revista Brasileira de Geociências, 42, 229–239.

    Article  Google Scholar 

  • Uliana, M., Biddle, K., & Cerdan, J. (1989). Mesozoic extension and the formation of Argentina sedimentary basins. In A. J. Tankard & H. R. Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins (Vol. 46, pp. 599–614). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Vigny, C., Rudloff, A., Ruegg, J. C., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. PEPI, 175, 86–95.

    Google Scholar 

  • Whipple, K. (2004). Bedrock rivers and the geomorphology of active orogens. Annual Reviews in Earth and Planetary Science, 32, 151–185. https://doi.org/10.1016/j.epsl.2005.12.022.

    Article  Google Scholar 

  • Whipple, K., & Tucker, G. (1999). Dynamics of the stream power river incision model: Implications for height limits of mountain ranges, landscape response timescales and research needs. Journal of Geophysical Research, 104, 17661–17674. https://doi.org/10.1029/1999jb900120.

    Article  Google Scholar 

  • Yáñez, G., Ranero, G. R., von Huene, R., & Díaz, J. (2001). Magnetic anomaly interpretation across a segment of the Southern Central Andes (32–34°S): implications on the role of the Juan Fernández Ridge in the tectonic evolution of the margin during upper Tertiary. Journal of Geophysical Research, 106, 6325–6345.

    Article  Google Scholar 

  • Yanites, B., Ehlers, T., Becker, J., Schnellmann, M., & Heuberge, S. (2013). High magnitude and rapid incision from river capture: Rhine River, Switzerland. Journal of Geophysical Research: Earth Surface, 118(1060–1084), 2013. https://doi.org/10.1002/jgrf.20056.

    Google Scholar 

  • Yatsu, E. (1955). On the longitudinal profile of the graded river. Transactions, American Geophysical Union, 36, 655–663.

    Article  Google Scholar 

  • Zapata, T. R., & Allmendinger, R. W. (1996). Thrust front zone of the Precordillera, Argentina: A thick-skinned triangle zone. Bulletin of the American Association of Petroleum Geologists, 80, 350–381.

    Google Scholar 

  • Zárate, M. (2003). Loess of southern South America. Quaternary Science Reviews, 22, 1987–2006. https://doi.org/10.1016/s0277-3791(03)00165-3.

    Article  Google Scholar 

  • Ziegler, P. A., & Fraefel, M. (2009). Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben, Swiss. Journal of Geosciences, 102, 57–75. https://doi.org/10.1007/s00015-009-1306-4.

    Google Scholar 

Download references

Acknowledgements

The present contribution was funded through Projects 1E/750 CS-CICITCA, PIP CONICET and PICTO 2009 UNSJ-0013- Préstamo BID. We thank Douglas Burbank, the anonymous reviewers and Iberian Geology Editor Pedro Alfaro for constructive criticism and thoughtful reviews, which greatly improved our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura P. Perucca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perucca, L.P., Espejo, K., Esper Angillieri, M.Y. et al. Neotectonic controls and stream piracy on the evolution of a river catchment: a case study in the Agua de la Peña River basin, Western Pampean Ranges, Argentina. J Iber Geol 44, 207–224 (2018). https://doi.org/10.1007/s41513-018-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-018-0052-8

Keywords

Palabras clave

Navigation