Skip to main content
Log in

An extremal problem for functions annihilated by a Toeplitz operator

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a bounded function \(\varphi \) on the unit circle \({\mathbb {T}}\), let \(T_{\varphi }\) be the associated Toeplitz operator on the Hardy space \(H^2\). Assume that the kernel

$$\begin{aligned} K_2(\varphi ):=\left\{ f\in H^2:\,T_{\varphi } f=0\right\} \end{aligned}$$

is nontrivial. Given a unit-norm function f in \(K_2(\varphi )\), we ask whether an identity of the form \(|f|^2=\frac{1}{2}\left( |f_1|^2+|f_2|^2\right) \) may hold a.e. on \({\mathbb {T}}\) for some \(f_1,f_2\in K_2(\varphi )\), both of norm 1 and such that \(|f_1|\ne |f_2|\) on a set of positive measure. We then show that such a decomposition is possible if and only if either f or \(\overline{z\varphi f}\) has a nonconstant inner factor. The proof relies on an intrinsic characterization of the moduli of functions in \(K_2(\varphi )\), a result which we also extend to \(K_p(\varphi )\) (the kernel of \(T_{\varphi }\) in \(H^p\)) with \(1\le p\le \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. de Leeuw, K., Rudin, W.: Extreme points and extremum problems in \(H_1\). Pac. J. Math. 8, 467–485 (1958)

    Article  Google Scholar 

  2. Douglas, R.G., Shapiro, H.S., Shields, A.L.: Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (Grenoble) 20, 37–76 (1970)

    Article  MathSciNet  Google Scholar 

  3. Dyakonov, K.M.: The Geometry of the Unit Ball in the Space \(K^1_{\theta }\). Geometric Problems of the Theory of Functions and Sets, pp. 52–54. Kalinin. Gos. Univ., Kalinin (1987). (Russian)

    Google Scholar 

  4. Dyakonov, K.M.: Moduli and arguments of analytic functions from subspaces in \(H^p\) that are invariant under the backward shift operator. Sibirsk. Mat. Zh. 31(6), 64–79 (1990). Translation in Sib. Math. J. 31, 926–939

    MathSciNet  Google Scholar 

  5. Dyakonov, K.M.: Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators. Proc. Am. Math. Soc. 116, 1007–1013 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Dyakonov, K.M.: Kernels of Toeplitz operators via Bourgain’s factorization theorem. J. Funct. Anal. 170, 93–106 (2000)

    Article  MathSciNet  Google Scholar 

  7. Dyakonov, K.M.: Polynomials and entire functions: zeros and geometry of the unit ball. Math. Res. Lett. 7, 393–404 (2000)

    Article  MathSciNet  Google Scholar 

  8. Dyakonov, K.M.: Zero sets and multiplier theorems for star-invariant subspaces. J. Anal. Math. 86, 247–269 (2002)

    Article  MathSciNet  Google Scholar 

  9. Garnett, J.B.: Bounded Analytic Functions. Springer, New York (2007). Revised first edition

    MATH  Google Scholar 

  10. Havin, V.P.: The factorization of analytic functions that are smooth up to the boundary. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22, 202–205 (1971)

    MathSciNet  Google Scholar 

  11. Hayashi, E.: The kernel of a Toeplitz operator. Integral Equ. Oper. Theory 9, 588–591 (1986)

    Article  MathSciNet  Google Scholar 

  12. Nikolski, N.K.: Operators, Functions, and Systems: An Easy Reading, Vol. 2: Model Operators and Systems. Mathematical Surveys and Monographs, vol. 93. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  13. Sarason, D.: Kernels of Toeplitz operators. In: Toeplitz Operators and Related Topics, Santa Cruz, CA, 1992. Operator Theory Advances and Applications, vol. 71, pp. 153–164, Birkhäuser, Basel (1994)

    Chapter  Google Scholar 

  14. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, vol. 54. Colloquium Publications, American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  15. Szegö, G.: Über die Randwerte analytischer Funktionen. Math. Ann. 84, 232–244 (1921)

    Article  MathSciNet  Google Scholar 

  16. Szegö, G.: Orthogonal Polynomials, vol. 23, 4th edn. Colloquium Publications, American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin M. Dyakonov.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by Grants MTM2014-51834-P and MTM2017-83499-P from El Ministerio de Economía y Competitividad (Spain), and by Grant 2017-SGR-358 from AGAUR (Generalitat de Catalunya).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyakonov, K.M. An extremal problem for functions annihilated by a Toeplitz operator. Anal.Math.Phys. 9, 1019–1029 (2019). https://doi.org/10.1007/s13324-019-00291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-019-00291-0

Keywords

Mathematics Subject Classification

Navigation